Spectra of discrete symplectic eigenvalue problems with separated boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a discrete symplectic eigenvalue problem with separated boundary conditions and obtain formulas for the number of eigenvalues on a given interval of the variation of the spectral parameter. In addition, we compare the spectra of two symplectic eigenvalue problems with different separated boundary conditions.
Keywords: discrete symplectic eigenvalue problems, relative oscillation theory, comparative index.
@article{IVM_2011_11_a9,
     author = {Yu. V. Eliseeva},
     title = {Spectra of discrete symplectic eigenvalue problems with separated boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--88},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a9/}
}
TY  - JOUR
AU  - Yu. V. Eliseeva
TI  - Spectra of discrete symplectic eigenvalue problems with separated boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 84
EP  - 88
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a9/
LA  - ru
ID  - IVM_2011_11_a9
ER  - 
%0 Journal Article
%A Yu. V. Eliseeva
%T Spectra of discrete symplectic eigenvalue problems with separated boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 84-88
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a9/
%G ru
%F IVM_2011_11_a9
Yu. V. Eliseeva. Spectra of discrete symplectic eigenvalue problems with separated boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 84-88. http://geodesic.mathdoc.fr/item/IVM_2011_11_a9/

[1] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve, Nauka, M., 1967

[2] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl

[3] Kratz W., Quadratic functionals in variational analysis and control theory, Akademie Verlag, Berlin, 1995 | MR | Zbl

[4] Bohner M., Došlý O., Kratz W., “An oscillation theorem for discrete eigenvalue problems”, Rocky Mountain J. Math., 33:4 (2003), 1233–1260 | DOI | MR | Zbl

[5] Došlý O., Kratz W., “Oscillation theorems for symplectic difference systems”, J. Difference Equ. Appl., 13:7 (2007), 585–605 | DOI | MR

[6] Došlý O., Kratz W., “Oscillation and spectral theory for symplectic difference systems with separated boundary conditions”, J. Difference Equ. Appl., 16:7 (2010), 831–846 | DOI | MR

[7] Bohner M., Došlý O., “Disconjugacy and transformations for symplectic systems”, Rocky Mountain J. Math., 27:3 (1997), 707–743 | DOI | MR | Zbl

[8] Kratz W., “Discrete oscillation”, J. Difference Equ. Appl., 9:1 (2003), 135–147 | MR | Zbl

[9] Ammann K., Teschl G., “Relative oscillation theory for Jacobi matrices”, Proc. 14th Intern. Conf. on Difference Equations and Applications, ed. M. Bohner et al., Uğur-Bahçeşehir University Publishing Co, Istanbul, 2009, 105–115 | MR

[10] Krüger H., Teschl G., “Relative oscillation theory, weighted zeros of the wronskian, and spectral shift function”, Commun. Math. Phys., 287:2 (2009), 613–640 | DOI | MR

[11] Teschl G., “Oscillation theory and renormalized oscillation theory for Jacobi operators”, J. Diff. Equ., 129:2 (1996), 532–558 | DOI | MR | Zbl

[12] Eliseeva Yu.V., “Teoremy sravneniya dlya simplekticheskikh sistem raznostnykh uravnenii”, Differents. uravneniya, 46:9 (2010), 1329–1342 | MR | Zbl

[13] Elyseeva J., “On relative oscillation theory for symplectic eigenvalue problems”, Appl. Math. Lett., 23:10 (2010), 1231–1237 | DOI | MR | Zbl

[14] Eliseeva Yu. V., “Sravnitelnyi indeks dlya reshenii simplekticheskikh sistem raznostnykh uravnenii”, Differents. uravneniya, 45:3 (2009), 431–444 | MR | Zbl

[15] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004

[16] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999