Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_11_a9, author = {Yu. V. Eliseeva}, title = {Spectra of discrete symplectic eigenvalue problems with separated boundary conditions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {84--88}, publisher = {mathdoc}, number = {11}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a9/} }
TY - JOUR AU - Yu. V. Eliseeva TI - Spectra of discrete symplectic eigenvalue problems with separated boundary conditions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 84 EP - 88 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_11_a9/ LA - ru ID - IVM_2011_11_a9 ER -
Yu. V. Eliseeva. Spectra of discrete symplectic eigenvalue problems with separated boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 84-88. http://geodesic.mathdoc.fr/item/IVM_2011_11_a9/
[1] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve, Nauka, M., 1967
[2] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl
[3] Kratz W., Quadratic functionals in variational analysis and control theory, Akademie Verlag, Berlin, 1995 | MR | Zbl
[4] Bohner M., Došlý O., Kratz W., “An oscillation theorem for discrete eigenvalue problems”, Rocky Mountain J. Math., 33:4 (2003), 1233–1260 | DOI | MR | Zbl
[5] Došlý O., Kratz W., “Oscillation theorems for symplectic difference systems”, J. Difference Equ. Appl., 13:7 (2007), 585–605 | DOI | MR
[6] Došlý O., Kratz W., “Oscillation and spectral theory for symplectic difference systems with separated boundary conditions”, J. Difference Equ. Appl., 16:7 (2010), 831–846 | DOI | MR
[7] Bohner M., Došlý O., “Disconjugacy and transformations for symplectic systems”, Rocky Mountain J. Math., 27:3 (1997), 707–743 | DOI | MR | Zbl
[8] Kratz W., “Discrete oscillation”, J. Difference Equ. Appl., 9:1 (2003), 135–147 | MR | Zbl
[9] Ammann K., Teschl G., “Relative oscillation theory for Jacobi matrices”, Proc. 14th Intern. Conf. on Difference Equations and Applications, ed. M. Bohner et al., Uğur-Bahçeşehir University Publishing Co, Istanbul, 2009, 105–115 | MR
[10] Krüger H., Teschl G., “Relative oscillation theory, weighted zeros of the wronskian, and spectral shift function”, Commun. Math. Phys., 287:2 (2009), 613–640 | DOI | MR
[11] Teschl G., “Oscillation theory and renormalized oscillation theory for Jacobi operators”, J. Diff. Equ., 129:2 (1996), 532–558 | DOI | MR | Zbl
[12] Eliseeva Yu.V., “Teoremy sravneniya dlya simplekticheskikh sistem raznostnykh uravnenii”, Differents. uravneniya, 46:9 (2010), 1329–1342 | MR | Zbl
[13] Elyseeva J., “On relative oscillation theory for symplectic eigenvalue problems”, Appl. Math. Lett., 23:10 (2010), 1231–1237 | DOI | MR | Zbl
[14] Eliseeva Yu. V., “Sravnitelnyi indeks dlya reshenii simplekticheskikh sistem raznostnykh uravnenii”, Differents. uravneniya, 45:3 (2009), 431–444 | MR | Zbl
[15] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004
[16] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999