Natural multitransformations of multifunctors
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 58-71
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue to develop the theory of multicategories over verbal categories. This theory includes both the usual category theory and the theory of operads, as well as a significant part of the classical universal algebra. We introduce the notion of natural multitransformations of multifunctors, owing to which categories of multifunctors from a multicategory to another one turn into multicategories. In particular, any algebraic variety over a multicategory possesses a natural structure of a multicategory. Furthermore, we construct a multicategory analog of comma-categories with properties similar to the category case. We define the notion of the center of a multicategory and show that centers of multicategories are commutative operads (introduced by us earlier) and only they. We prove that the notion of a commutative FSet-operad coincides with the notion of a commutative algebraic theory.
Keywords:
verbal category, multicategory, multifunctor, comma-multicategory, algebra over multicategory, center, commutative operad, commutative algebraic theory.
Mots-clés : natural multitransformation
Mots-clés : natural multitransformation
@article{IVM_2011_11_a6,
author = {S. N. Tronin},
title = {Natural multitransformations of multifunctors},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {58--71},
publisher = {mathdoc},
number = {11},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/}
}
S. N. Tronin. Natural multitransformations of multifunctors. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 58-71. http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/