Natural multitransformations of multifunctors
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 58-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue to develop the theory of multicategories over verbal categories. This theory includes both the usual category theory and the theory of operads, as well as a significant part of the classical universal algebra. We introduce the notion of natural multitransformations of multifunctors, owing to which categories of multifunctors from a multicategory to another one turn into multicategories. In particular, any algebraic variety over a multicategory possesses a natural structure of a multicategory. Furthermore, we construct a multicategory analog of comma-categories with properties similar to the category case. We define the notion of the center of a multicategory and show that centers of multicategories are commutative operads (introduced by us earlier) and only they. We prove that the notion of a commutative FSet-operad coincides with the notion of a commutative algebraic theory.
Keywords: verbal category, multicategory, multifunctor, comma-multicategory, algebra over multicategory, center, commutative operad, commutative algebraic theory.
Mots-clés : natural multitransformation
@article{IVM_2011_11_a6,
     author = {S. N. Tronin},
     title = {Natural multitransformations of multifunctors},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--71},
     year = {2011},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/}
}
TY  - JOUR
AU  - S. N. Tronin
TI  - Natural multitransformations of multifunctors
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 58
EP  - 71
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/
LA  - ru
ID  - IVM_2011_11_a6
ER  - 
%0 Journal Article
%A S. N. Tronin
%T Natural multitransformations of multifunctors
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 58-71
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/
%G ru
%F IVM_2011_11_a6
S. N. Tronin. Natural multitransformations of multifunctors. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 58-71. http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/

[1] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004

[2] Tronin S. N., “Operady i mnogoobraziya algebr, opredelyaemye polilineinymi tozhdestvami”, Sib. matem. zhurn., 47:3 (2006), 670–694 | MR | Zbl

[3] Borceux F., Handbook of categorical algebra, v. 2, Categories and structures, Cambridge University Press, 1994 | MR

[4] Tronin S. N., “Abstraktnye klony i operady”, Sib. matem. zhurn., 43:4 (2002), 924–936 | MR | Zbl

[5] Tronin S. N., “Multikategorii i mnogoobraziya mnogosortnykh algebr”, Sib. matem. zhurn., 49:5 (2008), 1184–1201 | MR

[6] Tronin S. N., “Natural multitransformations of multifunctors”, Mezhdunar. algebr. konf. posv. 100-letiyu so dnya rozhd. A. G. Kurosha, Tezisy dokl., Izd-vo mekhmata MGU, M., 2008, 363–364

[7] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977 | MR

[8] Kelly G. M., “On the operads of J. P. May”, Reprints in Theory and Applications of Categories, 13 (2005), 1–13 | MR | Zbl

[9] Lambek J., “Deductive systems and categories. II. Standard constructions and closed categories”, Category Theory, Homology Theory and Their Applications, v. I, Lect. Notes in Math., 86, Springer-Verlag, Berlin–Heidelberg–New York, 1969, 76–122 | MR

[10] Baez J. C., Dolan J., “Higher-dimensional algebra. III: $n$-categories and the algebra of opetopes”, Adv. Math., 135:2 (1998), 145–206 | DOI | MR | Zbl

[11] Hermida C., “Representable multicategories”, Adv. Math., 151:2 (2000), 164–225 | DOI | MR | Zbl

[12] Leinster T., Higher operads, higher categories, London Math. Soc. Lect. Notes Ser., Cambr. Univ. Press, 2003 | MR

[13] Vasyukov V. L., Kategornaya logika, ANO Institut logiki, M., 2005

[14] Feis K., Algebra: koltsa, moduli, kategorii, v. 1, Mir, M., 1977

[15] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl