Natural multitransformations of multifunctors
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 58-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to develop the theory of multicategories over verbal categories. This theory includes both the usual category theory and the theory of operads, as well as a significant part of the classical universal algebra. We introduce the notion of natural multitransformations of multifunctors, owing to which categories of multifunctors from a multicategory to another one turn into multicategories. In particular, any algebraic variety over a multicategory possesses a natural structure of a multicategory. Furthermore, we construct a multicategory analog of comma-categories with properties similar to the category case. We define the notion of the center of a multicategory and show that centers of multicategories are commutative operads (introduced by us earlier) and only they. We prove that the notion of a commutative FSet-operad coincides with the notion of a commutative algebraic theory.
Keywords: verbal category, multicategory, multifunctor, comma-multicategory, algebra over multicategory, center, commutative operad, commutative algebraic theory.
Mots-clés : natural multitransformation
@article{IVM_2011_11_a6,
     author = {S. N. Tronin},
     title = {Natural multitransformations of multifunctors},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--71},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/}
}
TY  - JOUR
AU  - S. N. Tronin
TI  - Natural multitransformations of multifunctors
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 58
EP  - 71
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/
LA  - ru
ID  - IVM_2011_11_a6
ER  - 
%0 Journal Article
%A S. N. Tronin
%T Natural multitransformations of multifunctors
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 58-71
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/
%G ru
%F IVM_2011_11_a6
S. N. Tronin. Natural multitransformations of multifunctors. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 58-71. http://geodesic.mathdoc.fr/item/IVM_2011_11_a6/

[1] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004

[2] Tronin S. N., “Operady i mnogoobraziya algebr, opredelyaemye polilineinymi tozhdestvami”, Sib. matem. zhurn., 47:3 (2006), 670–694 | MR | Zbl

[3] Borceux F., Handbook of categorical algebra, v. 2, Categories and structures, Cambridge University Press, 1994 | MR

[4] Tronin S. N., “Abstraktnye klony i operady”, Sib. matem. zhurn., 43:4 (2002), 924–936 | MR | Zbl

[5] Tronin S. N., “Multikategorii i mnogoobraziya mnogosortnykh algebr”, Sib. matem. zhurn., 49:5 (2008), 1184–1201 | MR

[6] Tronin S. N., “Natural multitransformations of multifunctors”, Mezhdunar. algebr. konf. posv. 100-letiyu so dnya rozhd. A. G. Kurosha, Tezisy dokl., Izd-vo mekhmata MGU, M., 2008, 363–364

[7] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977 | MR

[8] Kelly G. M., “On the operads of J. P. May”, Reprints in Theory and Applications of Categories, 13 (2005), 1–13 | MR | Zbl

[9] Lambek J., “Deductive systems and categories. II. Standard constructions and closed categories”, Category Theory, Homology Theory and Their Applications, v. I, Lect. Notes in Math., 86, Springer-Verlag, Berlin–Heidelberg–New York, 1969, 76–122 | MR

[10] Baez J. C., Dolan J., “Higher-dimensional algebra. III: $n$-categories and the algebra of opetopes”, Adv. Math., 135:2 (1998), 145–206 | DOI | MR | Zbl

[11] Hermida C., “Representable multicategories”, Adv. Math., 151:2 (2000), 164–225 | DOI | MR | Zbl

[12] Leinster T., Higher operads, higher categories, London Math. Soc. Lect. Notes Ser., Cambr. Univ. Press, 2003 | MR

[13] Vasyukov V. L., Kategornaya logika, ANO Institut logiki, M., 2005

[14] Feis K., Algebra: koltsa, moduli, kategorii, v. 1, Mir, M., 1977

[15] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl