A modification of an approach to the solution of the Hilbert boundary-value problem for an analytic function in a~multiconnected circular domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a modification of author's approach (Russian Mathematics (Iz. VUZ) 44 (2), 58–62 (2000)) to the solution of the Hilbert boundary value problem for an analytic function in a multiconnected circular domain. This approach implies the solution of the corresponding homogeneous problem including the determination of an analytic function from the known boundary values of its argument on circular domain.
Keywords: Hilbert boundary value problem, index of problem, Schwarz operator.
Mots-clés : Villat formula
@article{IVM_2011_11_a5,
     author = {R. B. Salimov},
     title = {A modification of an approach to the solution of the {Hilbert} boundary-value problem for an analytic function in a~multiconnected circular domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--57},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - A modification of an approach to the solution of the Hilbert boundary-value problem for an analytic function in a~multiconnected circular domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 46
EP  - 57
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/
LA  - ru
ID  - IVM_2011_11_a5
ER  - 
%0 Journal Article
%A R. B. Salimov
%T A modification of an approach to the solution of the Hilbert boundary-value problem for an analytic function in a~multiconnected circular domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 46-57
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/
%G ru
%F IVM_2011_11_a5
R. B. Salimov. A modification of an approach to the solution of the Hilbert boundary-value problem for an analytic function in a~multiconnected circular domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 46-57. http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/

[1] Salimov R. B., “Novyi podkhod k resheniyu kraevoi zadachi Gilberta dlya analiticheskoi funktsii v mnogosvyaznoi oblasti”, Izv. vuzov. Matem., 2000, no. 2, 60–64 | MR | Zbl

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl

[4] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovykh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl

[5] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl

[6] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[7] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[10] Mityushev V., “Solution of the Hilbert boundary value problem for a multiply connected domain”, Słupskie Prace Mat. Przyr., 9a (1994), 33–67 | MR

[11] Mityushev V., “Hilbert boundary value problem for multiply connected domains”, Complex variables, 35:4 (1998), 283–295 | MR | Zbl

[12] Mityushev V., Rogosin S., Constructive methods for linear and nonlinear boundary value problems for analytic functions: theory and applications, Monographs and Surveys in Pure and Applied Mathematics, Chapman Hall/CRC, NY etc., 1999 | MR