Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_11_a5, author = {R. B. Salimov}, title = {A modification of an approach to the solution of the {Hilbert} boundary-value problem for an analytic function in a~multiconnected circular domain}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {46--57}, publisher = {mathdoc}, number = {11}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/} }
TY - JOUR AU - R. B. Salimov TI - A modification of an approach to the solution of the Hilbert boundary-value problem for an analytic function in a~multiconnected circular domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 46 EP - 57 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/ LA - ru ID - IVM_2011_11_a5 ER -
%0 Journal Article %A R. B. Salimov %T A modification of an approach to the solution of the Hilbert boundary-value problem for an analytic function in a~multiconnected circular domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2011 %P 46-57 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/ %G ru %F IVM_2011_11_a5
R. B. Salimov. A modification of an approach to the solution of the Hilbert boundary-value problem for an analytic function in a~multiconnected circular domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 46-57. http://geodesic.mathdoc.fr/item/IVM_2011_11_a5/
[1] Salimov R. B., “Novyi podkhod k resheniyu kraevoi zadachi Gilberta dlya analiticheskoi funktsii v mnogosvyaznoi oblasti”, Izv. vuzov. Matem., 2000, no. 2, 60–64 | MR | Zbl
[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl
[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl
[4] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gëlderovykh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl
[5] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl
[6] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[7] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl
[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970
[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972
[10] Mityushev V., “Solution of the Hilbert boundary value problem for a multiply connected domain”, Słupskie Prace Mat. Przyr., 9a (1994), 33–67 | MR
[11] Mityushev V., “Hilbert boundary value problem for multiply connected domains”, Complex variables, 35:4 (1998), 283–295 | MR | Zbl
[12] Mityushev V., Rogosin S., Constructive methods for linear and nonlinear boundary value problems for analytic functions: theory and applications, Monographs and Surveys in Pure and Applied Mathematics, Chapman Hall/CRC, NY etc., 1999 | MR