Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_11_a4, author = {E. N. Makhrova}, title = {The structure of dendrites with the periodic point property}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {41--45}, publisher = {mathdoc}, number = {11}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a4/} }
E. N. Makhrova. The structure of dendrites with the periodic point property. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 41-45. http://geodesic.mathdoc.fr/item/IVM_2011_11_a4/
[1] Ayres W. L., “Some generalizations of the Scherrer fixed-point theorem”, Fundam. Math., 16 (1930), 332–336 | Zbl
[2] Schirmer H., “Properties of fixed point sets on dendrites”, Pacific J. Math., 36:3 (1971), 795–810 | MR | Zbl
[3] Mai J., Shi E., “$\overline R=\overline P$ for maps of dendrite $X$ with $\operatorname{Card}(\operatorname{End}X)$”, Intern. J. Bifurcation Chaos, 19:4 (2009), 1391–1396 | DOI | MR | Zbl
[4] Makhrova E. N., “O suschestvovanii periodicheskikh tochek nepreryvnykh otobrazhenii dendritov”, Nekotorye problemy fundamentalnoi i prikladnoi matematiki, Sb. nauchn. tr., Moskva, 2007, 133–141
[5] Peitgen H. O., Richter P. H., The beauty of fractals, Springer, Berlin, 1986 | MR | Zbl
[6] Nadler S. B., Continuum theory, Marcel Dekker, N.Y., 1992 | MR | Zbl
[7] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR
[8] Efremova L. S., Makhrova E. N., “Dinamika monotonnykh otobrazhenii dendritov”, Matem. sb., 192:6 (2001), 15–30 | MR | Zbl
[9] Arévalo D., Charatonic W. J., Covarrubias P. P., Simón L., “Dendrites with a closed set of end points”, Topology Appl., 115:1 (2001), 1–17 | DOI | MR | Zbl
[10] Sibirskii K. S., Vvedenie v topologicheskuyu dinamiku, AN Mold.SSR, Kishinev, 1970 | MR