The structure of dendrites with the periodic point property
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 41-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the structure of dendrites with the periodic point property, i.e., dendrites $X$ such that for any continuous map $f\colon X\to X$ and any subcontinuum $Y\subset X$ the condition $Y\subset f(Y)$ implies that $Y$ contains a periodic point of $f$.
Mots-clés : dendrite
Keywords: continuous map, periodic points.
@article{IVM_2011_11_a4,
     author = {E. N. Makhrova},
     title = {The structure of dendrites with the periodic point property},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--45},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a4/}
}
TY  - JOUR
AU  - E. N. Makhrova
TI  - The structure of dendrites with the periodic point property
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 41
EP  - 45
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a4/
LA  - ru
ID  - IVM_2011_11_a4
ER  - 
%0 Journal Article
%A E. N. Makhrova
%T The structure of dendrites with the periodic point property
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 41-45
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a4/
%G ru
%F IVM_2011_11_a4
E. N. Makhrova. The structure of dendrites with the periodic point property. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 41-45. http://geodesic.mathdoc.fr/item/IVM_2011_11_a4/

[1] Ayres W. L., “Some generalizations of the Scherrer fixed-point theorem”, Fundam. Math., 16 (1930), 332–336 | Zbl

[2] Schirmer H., “Properties of fixed point sets on dendrites”, Pacific J. Math., 36:3 (1971), 795–810 | MR | Zbl

[3] Mai J., Shi E., “$\overline R=\overline P$ for maps of dendrite $X$ with $\operatorname{Card}(\operatorname{End}X)$”, Intern. J. Bifurcation Chaos, 19:4 (2009), 1391–1396 | DOI | MR | Zbl

[4] Makhrova E. N., “O suschestvovanii periodicheskikh tochek nepreryvnykh otobrazhenii dendritov”, Nekotorye problemy fundamentalnoi i prikladnoi matematiki, Sb. nauchn. tr., Moskva, 2007, 133–141

[5] Peitgen H. O., Richter P. H., The beauty of fractals, Springer, Berlin, 1986 | MR | Zbl

[6] Nadler S. B., Continuum theory, Marcel Dekker, N.Y., 1992 | MR | Zbl

[7] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR

[8] Efremova L. S., Makhrova E. N., “Dinamika monotonnykh otobrazhenii dendritov”, Matem. sb., 192:6 (2001), 15–30 | MR | Zbl

[9] Arévalo D., Charatonic W. J., Covarrubias P. P., Simón L., “Dendrites with a closed set of end points”, Topology Appl., 115:1 (2001), 1–17 | DOI | MR | Zbl

[10] Sibirskii K. S., Vvedenie v topologicheskuyu dinamiku, AN Mold.SSR, Kishinev, 1970 | MR