Derivations of a~matrix ring containing a~subring of triangular matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the derivations (including Jordan and Lie ones) for any ring $S$ of finitary matrices over an associative ring with identity element provided that $S$ contains all triangular finitary matrices.
Keywords: finitary matrix, derivation of ring, Jordan and Lie derivations of ring.
@article{IVM_2011_11_a2,
     author = {S. G. Kolesnikov and N. V. Mal'tsev},
     title = {Derivations of a~matrix ring containing a~subring of triangular matrices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--33},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a2/}
}
TY  - JOUR
AU  - S. G. Kolesnikov
AU  - N. V. Mal'tsev
TI  - Derivations of a~matrix ring containing a~subring of triangular matrices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 23
EP  - 33
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a2/
LA  - ru
ID  - IVM_2011_11_a2
ER  - 
%0 Journal Article
%A S. G. Kolesnikov
%A N. V. Mal'tsev
%T Derivations of a~matrix ring containing a~subring of triangular matrices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 23-33
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a2/
%G ru
%F IVM_2011_11_a2
S. G. Kolesnikov; N. V. Mal'tsev. Derivations of a~matrix ring containing a~subring of triangular matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 23-33. http://geodesic.mathdoc.fr/item/IVM_2011_11_a2/

[1] Herstein I. N., “Jordan derivations of prime rings”, Proc. Amer. Math. Soc., 8:6 (1957), 1104–1110 | DOI | MR

[2] Benkovič D., “Jordan derivations and antiderivations on triangular matrices”, Linear Algebra Appl., 397 (2005), 235–244 | DOI | MR | Zbl

[3] Chun J. H., Park J. W., “Derivations on subrings of matrix rings”, Bull. Korean Math. Soc., 43:3 (2006), 635–644 | MR | Zbl

[4] Cusack J. M., “Jordan derivations on rings”, Proc. Amer. Math. Soc., 53:2 (1975), 321–324 | DOI | MR | Zbl

[5] Ghosseiri N. M., “Jordan derivations of some classes of matrix rings”, Taiwanese J. Math., 11:1 (2007), 51–62 | MR | Zbl

[6] Kuzucuoglu F., Levchuk V. M., “Jordan isomorphisms of radical finitary matrix rings”, J. Algebra Appl., 9:4 (2010), 659–667 | DOI | MR | Zbl

[7] Levchuk V. M., Radchenko O. V., “Derivations of the locally nilpotent matrix rings”, J. Algebra Appl., 9:5 (2010), 717–724 | DOI | MR | Zbl

[8] Ou S., Wang D., Yao R., “Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring”, Linear Algebra Appl., 424:2–3 (2007), 378–383 | MR | Zbl

[9] Zhang J.-H., Yu W., “Jordan derivations of triangular algebras”, Linear Algebra Appl., 419:1 (2006), 251–255 | DOI | MR | Zbl

[10] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[11] Levchuk V. M., “Nekotorye lokalno nilpotentnye matrichnye koltsa”, Matem. zametki, 42:5 (1987), 631–641 | MR | Zbl