Mathematical modeling of the stress state of a~transverse plastic layer in a~round rod
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 12-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct mathematical models of the plastic deformation of a continuous round rod containing a transverse (less strong) inhomogeneous layer under an axial load. We study the obtained models by analytical and numerical methods. We thoroughly study the local strengthening of such layers by involving the base material of the rod in the plastic deformation process. We obtain explicit formulas for the critical stress states in the layer and the critical axial load on the rod.
Keywords: less strong layer, plastic deformation, local strengthening, system of hyperbolic partial differential equations.
@article{IVM_2011_11_a1,
     author = {T. V. Eroshkina and V. L. Dil'man},
     title = {Mathematical modeling of the stress state of a~transverse plastic layer in a~round rod},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--22},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a1/}
}
TY  - JOUR
AU  - T. V. Eroshkina
AU  - V. L. Dil'man
TI  - Mathematical modeling of the stress state of a~transverse plastic layer in a~round rod
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 12
EP  - 22
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a1/
LA  - ru
ID  - IVM_2011_11_a1
ER  - 
%0 Journal Article
%A T. V. Eroshkina
%A V. L. Dil'man
%T Mathematical modeling of the stress state of a~transverse plastic layer in a~round rod
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 12-22
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a1/
%G ru
%F IVM_2011_11_a1
T. V. Eroshkina; V. L. Dil'man. Mathematical modeling of the stress state of a~transverse plastic layer in a~round rod. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 12-22. http://geodesic.mathdoc.fr/item/IVM_2011_11_a1/

[1] Bakshi O. A., Kachanov L. M., “O napryazhennom sostoyanii plasticheskoi prosloiki pri osesimmetrichnoi deformatsii”, Izv. AN SSSR. Mekhanika, 1965, no. 2, 134–137

[2] Shakhmatov M. V., Erofeev V. V., Ostsemin A. A., “O nekotorykh osobennostyakh metoda linii skolzheniya pri reshenii osesimmetrichnykh zadach teorii plastichnosti”, Probl. prochnosti, 1985, no. 3, 88–94

[3] Satoh K., Toyoda M., “Joint strength of heavy plates with lower strength weld metal”, Welding J., 54:9 (1975), 311–319

[4] Dilman V. L., Eroshkina T. V., “Ob odnoi modeli, opisyvayuschei napryazhennoe sostoyanie v kruglom sterzhne”, Obozrenie priklad. i prom. matem., 11:2 (2004), 793–794

[5] Eroshkina T. V., “Napryazhennoe sostoyanie poperechnoi myagkoi prosloiki v rastyagivaemom kruglom sterzhne pri gipoteze parabolicheskikh sechenii”, Obozrenie prikl. i prom. matem., 14:1 (2007), 109–110

[6] Dilman V. L., Matematicheskie modeli napryazhennogo sostoyaniya neodnorodnykh tonkostennykh tsilindricheskikh obolochek, Izd-vo YuUrGU, Chelyabinsk, 2007

[7] Dilman V. L., Eroshkina T. V., “Matematicheskie modeli osesimmetrichnogo napryazhennogo sostoyaniya pri gipoteze razdeleniya peremennykh dlya kasatelnykh napryazhenii”, Izv. Chelyab. nauch. tsentra, 2006, no. 2, 1–4

[8] Dilman V. L., Ostsemin A. A., Eroshkina T. V., “Prochnost mekhanicheski neodnorodnykh svarnykh soedinenii sterzhnei armatury”, Vestn. mashinostroeniya, 2008, no. 9, 13–17