A method of algebraic extension of the Lagrangian of weak interactions to non-associative algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an algebraic approach to the extension of the Lagrangian of weak interactions onto a non-associative algebra. A special feature of the proposed method is the use of matrix representations (rather than vector ones) for physical fields and their interactions. We construct the Lagrangian of material and interaction fields on the introduced algebra.
Keywords: quantum field theory, Cayley octaves, octonions, weak interactions, non-associativity.
@article{IVM_2011_11_a0,
     author = {V. Yu. Dorofeev},
     title = {A method of algebraic extension of the {Lagrangian} of weak interactions to non-associative algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a0/}
}
TY  - JOUR
AU  - V. Yu. Dorofeev
TI  - A method of algebraic extension of the Lagrangian of weak interactions to non-associative algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a0/
LA  - ru
ID  - IVM_2011_11_a0
ER  - 
%0 Journal Article
%A V. Yu. Dorofeev
%T A method of algebraic extension of the Lagrangian of weak interactions to non-associative algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a0/
%G ru
%F IVM_2011_11_a0
V. Yu. Dorofeev. A method of algebraic extension of the Lagrangian of weak interactions to non-associative algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2011_11_a0/

[1] Baez J. C., “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205, arXiv: math/0105155 | DOI | MR | Zbl

[2] Jordan P., Neumann J., Wigner E., “On an algebraic generalization of the quantum mechanical formalism”, Ann. Math., 35 (1934), 29–64 | DOI | MR | Zbl

[3] Zorn M., “Alternativkorper und quadratische Systeme”, Abh. Math. Sem. Hamb. Univ., 9 (1933), 395–402 | DOI | Zbl

[4] Daboul J., Delbourgo R., “Matrix representation of octonions and generalizations”, J. Math. Phys., 40:8 (1999), 4134–4150, arXiv: hep-th/9906065 | DOI | MR | Zbl

[5] Nelipa N. F., Fizika elementarnykh chastits. Kalibrovochnye polya, Nauka, M., 1985 | MR