Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_11_a0, author = {V. Yu. Dorofeev}, title = {A method of algebraic extension of the {Lagrangian} of weak interactions to non-associative algebra}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--11}, publisher = {mathdoc}, number = {11}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a0/} }
TY - JOUR AU - V. Yu. Dorofeev TI - A method of algebraic extension of the Lagrangian of weak interactions to non-associative algebra JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 3 EP - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_11_a0/ LA - ru ID - IVM_2011_11_a0 ER -
V. Yu. Dorofeev. A method of algebraic extension of the Lagrangian of weak interactions to non-associative algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2011_11_a0/
[1] Baez J. C., “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205, arXiv: math/0105155 | DOI | MR | Zbl
[2] Jordan P., Neumann J., Wigner E., “On an algebraic generalization of the quantum mechanical formalism”, Ann. Math., 35 (1934), 29–64 | DOI | MR | Zbl
[3] Zorn M., “Alternativkorper und quadratische Systeme”, Abh. Math. Sem. Hamb. Univ., 9 (1933), 395–402 | DOI | Zbl
[4] Daboul J., Delbourgo R., “Matrix representation of octonions and generalizations”, J. Math. Phys., 40:8 (1999), 4134–4150, arXiv: hep-th/9906065 | DOI | MR | Zbl
[5] Nelipa N. F., Fizika elementarnykh chastits. Kalibrovochnye polya, Nauka, M., 1985 | MR