A compact quantum semialgebra generated by an isometry
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct a compact quantum semigroup structure on a Toeplitz algebra. We prove the existence of a subalgebra in the dual algebra isomorphic to the algebra of regular Borel measures on a circle with the convolution product. We also prove the existence of a Haar functionals in the dual algebra and in the subalgebra mentioned above. We show that this compact quantum semigroup contains a dense subalgebra with the structure of a weak Hopf algebra.
Keywords: quantum semigroup, quantum group, Haar functional, Toeplitz algebra, weak Hopf algebra, inverse semigroup.
@article{IVM_2011_10_a9,
     author = {M. A. Aukhadiev and S. A. Grigoryan and E. V. Lipacheva},
     title = {A compact quantum semialgebra generated by an isometry},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--93},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a9/}
}
TY  - JOUR
AU  - M. A. Aukhadiev
AU  - S. A. Grigoryan
AU  - E. V. Lipacheva
TI  - A compact quantum semialgebra generated by an isometry
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 89
EP  - 93
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a9/
LA  - ru
ID  - IVM_2011_10_a9
ER  - 
%0 Journal Article
%A M. A. Aukhadiev
%A S. A. Grigoryan
%A E. V. Lipacheva
%T A compact quantum semialgebra generated by an isometry
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 89-93
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a9/
%G ru
%F IVM_2011_10_a9
M. A. Aukhadiev; S. A. Grigoryan; E. V. Lipacheva. A compact quantum semialgebra generated by an isometry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2011_10_a9/

[1] Grigoryan S. A., Kuznetsova A. Yu., “$AF$-podalgebry $C^*$-algebry, porozhdennoi otobrazheniem”, Izv. vuzov. Matem., 2010, no. 3, 82–87 | MR

[2] Grigoryan S. A., Kuznetsova A. Yu., “$C^*$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 87:5 (2010), 694–703 | MR

[3] Grigoryan S. A., Salakhutdinov A. F., “$C^*$-algebry, porozhdennye polugruppami”, Izv. vuzov. Matem., 2009, no. 10, 68–71 | MR | Zbl

[4] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972 | Zbl

[5] Sadr M. M., A kind of compact quantum semigroups, 2010, arXiv: 0808.2740v2[math.OA]

[6] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[7] Li F., “Weak Hopf algebras and some new solutions of the quantum Yang–Baxter equation”, J. Algebra, 208:1 (1998), 72–100 | DOI | MR | Zbl

[8] Woronowicz S. L., “Compact quantum groups”, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl