Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_10_a9, author = {M. A. Aukhadiev and S. A. Grigoryan and E. V. Lipacheva}, title = {A compact quantum semialgebra generated by an isometry}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {89--93}, publisher = {mathdoc}, number = {10}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a9/} }
TY - JOUR AU - M. A. Aukhadiev AU - S. A. Grigoryan AU - E. V. Lipacheva TI - A compact quantum semialgebra generated by an isometry JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 89 EP - 93 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_10_a9/ LA - ru ID - IVM_2011_10_a9 ER -
M. A. Aukhadiev; S. A. Grigoryan; E. V. Lipacheva. A compact quantum semialgebra generated by an isometry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2011_10_a9/
[1] Grigoryan S. A., Kuznetsova A. Yu., “$AF$-podalgebry $C^*$-algebry, porozhdennoi otobrazheniem”, Izv. vuzov. Matem., 2010, no. 3, 82–87 | MR
[2] Grigoryan S. A., Kuznetsova A. Yu., “$C^*$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 87:5 (2010), 694–703 | MR
[3] Grigoryan S. A., Salakhutdinov A. F., “$C^*$-algebry, porozhdennye polugruppami”, Izv. vuzov. Matem., 2009, no. 10, 68–71 | MR | Zbl
[4] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972 | Zbl
[5] Sadr M. M., A kind of compact quantum semigroups, 2010, arXiv: 0808.2740v2[math.OA]
[6] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997
[7] Li F., “Weak Hopf algebras and some new solutions of the quantum Yang–Baxter equation”, J. Algebra, 208:1 (1998), 72–100 | DOI | MR | Zbl
[8] Woronowicz S. L., “Compact quantum groups”, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl