A complete description of the Lebesgue functions for classical Lagrange interpolation polynomials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

No explicit forms of Lebesgue functions were described in the mathematical literature by now. This issue is related to the problem of reducing the sum of a finite number of modules of fundamental polynomials or the corresponding Dirichlet kernels. That is why the complete study of graphs of functions for well-known forms remained a complex topical problem in the theory of approximation of functions. All these problems are completely solved in this paper both for an odd number of interpolation nodes and for an even one. To this end we apply elements of the differential calculus to various explicit forms of Lebesgue functions; the mentioned forms were obtained for the first time.
Mots-clés : Lebesgue function, Lebesgue constant, Lagrange interpolation polynomial
Keywords: Dirichlet kernel.
@article{IVM_2011_10_a8,
     author = {I. A. Shakirov},
     title = {A complete description of the {Lebesgue} functions for classical {Lagrange} interpolation polynomials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--88},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a8/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - A complete description of the Lebesgue functions for classical Lagrange interpolation polynomials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 80
EP  - 88
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a8/
LA  - ru
ID  - IVM_2011_10_a8
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T A complete description of the Lebesgue functions for classical Lagrange interpolation polynomials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 80-88
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a8/
%G ru
%F IVM_2011_10_a8
I. A. Shakirov. A complete description of the Lebesgue functions for classical Lagrange interpolation polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 80-88. http://geodesic.mathdoc.fr/item/IVM_2011_10_a8/

[1] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[2] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Nauk. dumka, Kiev, 1988 | MR | Zbl

[3] Babenko K. I., Osnovy chislennogo analiza, NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2002

[4] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.–L., 1949

[5] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[6] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR

[7] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Vysheish. shkola, Minsk, 1968

[8] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[9] Mysovskikh I. P., Lektsii po chislennym metodam, Izd-vo SPbU, S.-Peterburg, 1998

[10] Subbotin Yu. N., Telyakovskii S. A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Matem. sb., 191:8 (2000), 131–140 | MR | Zbl

[11] Kim V. A., “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $L$-splainov tretego poryadka”, Sib. matem. zhurn., 51:2 (2010), 330–341 | MR