Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_10_a7, author = {M. V. Falaleev and S. S. Orlov}, title = {Degenerate integro-differential operators in {Banach} spaces and their applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {68--79}, publisher = {mathdoc}, number = {10}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a7/} }
TY - JOUR AU - M. V. Falaleev AU - S. S. Orlov TI - Degenerate integro-differential operators in Banach spaces and their applications JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 68 EP - 79 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_10_a7/ LA - ru ID - IVM_2011_10_a7 ER -
M. V. Falaleev; S. S. Orlov. Degenerate integro-differential operators in Banach spaces and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 68-79. http://geodesic.mathdoc.fr/item/IVM_2011_10_a7/
[1] Falaleev M .V., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. matem. zhurn., 41:5 (2000), 1167–1182 | MR | Zbl
[2] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrect, 2002 | MR | Zbl
[3] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii vyrozhdennykh differentsialnykh i differentsialno-raznostnykh operatorov s neterovym operatorom v glavnoi chasti v banakhovykh prostranstvakh”, Sib. matem. zhurn., 46:6 (2005), 1393–1406 | MR | Zbl
[4] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh spektralnoi ogranichennosti”, Differents. uravneniya, 42:6 (2006), 769–774 | MR | Zbl
[5] Falaleev M. V., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh sektorialnosti i radialnosti”, Izv. vuzov. Matem., 2006, no. 10, 68–75 | MR
[6] Falaleev M. V., “Fundamentalnaya operator-funktsiya vyrozhdennogo uravneniya teploprovodnosti v banakhovykh prostranstvakh”, Dokl. RAN, 416:6 (2007), 745–749 | MR | Zbl
[7] Orlov S. S., “Klassicheskie i obobschennye resheniya vyrozhdennogo differentsialno-operatornogo uravneniya tretego poryadka v banakhovykh prostranstvakh”, Vestn. Buryatsk. gos. un-ta. Ser. Matem. i informatika, 2008, no. 9, 84–90
[8] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a nonlinear viscoelastic equation with strong damping”, Math. Methods Appl. Sci., 24:4 (2001), 1043–1053 | DOI | MR | Zbl
[9] Bisorgin E., Bisorgin V., Perla Menzala et al., “On the exponential stability for Von Karman equation in the presence of thermal effects”, Math. Methods Appl. Sci., 21 (1998), 393–416 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[10] Munoz Rivera J. E., Harue Fattori L., “Regularizing properties and propagation of singularities for thermoelastic plates”, Math. Methods Appl. Sci., 21 (1998), 797–821 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR
[12] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi i ikh prilozheniya, Tashkent, 1978, 133–148 | MR
[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR