Degenerate integro-differential operators in Banach spaces and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 68-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider linear integro-differential equations in Banach spaces with Fredholm operators at the highest-order derivatives and convolution-type Volterra integral parts. We obtain sufficient conditions for the unique solvability (in the classical sense) of the Cauchy problem for the mentioned equations and illustrate the abstract results with pithy examples. The studies are carried out in classes of distributions in Banach spaces with the help of the theory of fundamental operator functions of degenerate integro-differential operators. We propose a universal technique for proving theorems on the form of fundamental operator functions.
Keywords: Banach spaces, Fredholm operator, Jordan sets, fundamental operator functions.
Mots-clés : distributions
@article{IVM_2011_10_a7,
     author = {M. V. Falaleev and S. S. Orlov},
     title = {Degenerate integro-differential operators in {Banach} spaces and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--79},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a7/}
}
TY  - JOUR
AU  - M. V. Falaleev
AU  - S. S. Orlov
TI  - Degenerate integro-differential operators in Banach spaces and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 68
EP  - 79
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a7/
LA  - ru
ID  - IVM_2011_10_a7
ER  - 
%0 Journal Article
%A M. V. Falaleev
%A S. S. Orlov
%T Degenerate integro-differential operators in Banach spaces and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 68-79
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a7/
%G ru
%F IVM_2011_10_a7
M. V. Falaleev; S. S. Orlov. Degenerate integro-differential operators in Banach spaces and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 68-79. http://geodesic.mathdoc.fr/item/IVM_2011_10_a7/

[1] Falaleev M .V., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. matem. zhurn., 41:5 (2000), 1167–1182 | MR | Zbl

[2] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrect, 2002 | MR | Zbl

[3] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii vyrozhdennykh differentsialnykh i differentsialno-raznostnykh operatorov s neterovym operatorom v glavnoi chasti v banakhovykh prostranstvakh”, Sib. matem. zhurn., 46:6 (2005), 1393–1406 | MR | Zbl

[4] Falaleev M. V., Grazhdantseva E. Yu., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh spektralnoi ogranichennosti”, Differents. uravneniya, 42:6 (2006), 769–774 | MR | Zbl

[5] Falaleev M. V., “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v usloviyakh sektorialnosti i radialnosti”, Izv. vuzov. Matem., 2006, no. 10, 68–75 | MR

[6] Falaleev M. V., “Fundamentalnaya operator-funktsiya vyrozhdennogo uravneniya teploprovodnosti v banakhovykh prostranstvakh”, Dokl. RAN, 416:6 (2007), 745–749 | MR | Zbl

[7] Orlov S. S., “Klassicheskie i obobschennye resheniya vyrozhdennogo differentsialno-operatornogo uravneniya tretego poryadka v banakhovykh prostranstvakh”, Vestn. Buryatsk. gos. un-ta. Ser. Matem. i informatika, 2008, no. 9, 84–90

[8] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a nonlinear viscoelastic equation with strong damping”, Math. Methods Appl. Sci., 24:4 (2001), 1043–1053 | DOI | MR | Zbl

[9] Bisorgin E., Bisorgin V., Perla Menzala et al., “On the exponential stability for Von Karman equation in the presence of thermal effects”, Math. Methods Appl. Sci., 21 (1998), 393–416 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[10] Munoz Rivera J. E., Harue Fattori L., “Regularizing properties and propagation of singularities for thermoelastic plates”, Math. Methods Appl. Sci., 21 (1998), 797–821 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[12] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi i ikh prilozheniya, Tashkent, 1978, 133–148 | MR

[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR