Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_10_a6, author = {M. A. Sevodin}, title = {One generalization of the class of helical functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {59--67}, publisher = {mathdoc}, number = {10}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a6/} }
M. A. Sevodin. One generalization of the class of helical functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 59-67. http://geodesic.mathdoc.fr/item/IVM_2011_10_a6/
[1] Špaček L., “Prispevek k teorii funkci prostuch (contribution à la théorie des functions univalentes)”, Časopis pro pestovani matematiky a fysiky, 62 (1932), 12–19 | Zbl
[2] Avkhadiev F. G., Aksentev L. A., “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4 (1975), 3–60 | MR | Zbl
[3] Polner M. P., Sevodin M. A., Ispolzovanie odnoparametricheskikh semeistv krivykh dlya issledovaniya nekotorykh klassov odnolistnykh funktsii, No 3025-V97, VINITI, 1997
[4] Rakhmanov B. N., “K teorii odnolistnykh funktsii”, DAN SSSR, 97:6 (1954), 973–976 | Zbl
[5] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 2, Dalneishee postroenie teorii, Nauka, M., 1968 | Zbl
[6] Gehring F. W., “Spirals and the universal Teichmüller space”, Acta Math., 141:1 (1978), 99–113 | DOI | MR | Zbl
[7] Sevodin M. A., “Ob odnom obobschenii klassa $\Phi$-obraznykh funktsii”, Tez. dokl. nauchn. konf. “Algebra i analiz” (Kazan, 5–11 iyunya 1994 g.), Izd-vo Kazansk. un-ta, 1994, 115
[8] Goluzin G. M., Geometricheskiya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl
[9] Fait M., Krzyz J. G., Zygmunt J., “Explicit quasiconformal extensions for some classes of univalent functions”, Comment. Math. Helv., 51:2 (1976), 279–285 | DOI | MR | Zbl
[10] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[11] Aksentev L. A., Shabalin P. L., “Usloviya odnolistnosti s kvazikonformnym prodolzheniem i ikh primenenie”, Izv. vuzov. Matem., 1983, no. 2, 6–14 | MR | Zbl
[12] Sevodin M. A., Metod kvazikonformnogo prodolzheniya i geometricheskie svoistva obschego resheniya obratnykh kraevykh zadach, Diss. $\dots$ kand. fiz.-matem. nauk, Kazan, 1982