One generalization of the class of helical functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 59-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of domains whose boundaries are attainable by one-parametric families of curves formed by the rotation of a curve specially chosen for every family. We establish characteristics of analytic functions that map the unit circle on these domains. In addition, we single out subclasses of domains with rectifiable quasiconformal boundaries. We establish certain sufficient conditions for the univalence of functions that are analytic in mentioned domains.
Keywords: one-parametric families of curves, attainability of boundary, quasiconformal mapping
Mots-clés : sufficient univalence conditions.
@article{IVM_2011_10_a6,
     author = {M. A. Sevodin},
     title = {One generalization of the class of helical functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--67},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a6/}
}
TY  - JOUR
AU  - M. A. Sevodin
TI  - One generalization of the class of helical functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 59
EP  - 67
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a6/
LA  - ru
ID  - IVM_2011_10_a6
ER  - 
%0 Journal Article
%A M. A. Sevodin
%T One generalization of the class of helical functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 59-67
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a6/
%G ru
%F IVM_2011_10_a6
M. A. Sevodin. One generalization of the class of helical functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 59-67. http://geodesic.mathdoc.fr/item/IVM_2011_10_a6/

[1] Špaček L., “Prispevek k teorii funkci prostuch (contribution à la théorie des functions univalentes)”, Časopis pro pestovani matematiky a fysiky, 62 (1932), 12–19 | Zbl

[2] Avkhadiev F. G., Aksentev L. A., “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4 (1975), 3–60 | MR | Zbl

[3] Polner M. P., Sevodin M. A., Ispolzovanie odnoparametricheskikh semeistv krivykh dlya issledovaniya nekotorykh klassov odnolistnykh funktsii, No 3025-V97, VINITI, 1997

[4] Rakhmanov B. N., “K teorii odnolistnykh funktsii”, DAN SSSR, 97:6 (1954), 973–976 | Zbl

[5] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 2, Dalneishee postroenie teorii, Nauka, M., 1968 | Zbl

[6] Gehring F. W., “Spirals and the universal Teichmüller space”, Acta Math., 141:1 (1978), 99–113 | DOI | MR | Zbl

[7] Sevodin M. A., “Ob odnom obobschenii klassa $\Phi$-obraznykh funktsii”, Tez. dokl. nauchn. konf. “Algebra i analiz” (Kazan, 5–11 iyunya 1994 g.), Izd-vo Kazansk. un-ta, 1994, 115

[8] Goluzin G. M., Geometricheskiya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[9] Fait M., Krzyz J. G., Zygmunt J., “Explicit quasiconformal extensions for some classes of univalent functions”, Comment. Math. Helv., 51:2 (1976), 279–285 | DOI | MR | Zbl

[10] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[11] Aksentev L. A., Shabalin P. L., “Usloviya odnolistnosti s kvazikonformnym prodolzheniem i ikh primenenie”, Izv. vuzov. Matem., 1983, no. 2, 6–14 | MR | Zbl

[12] Sevodin M. A., Metod kvazikonformnogo prodolzheniya i geometricheskie svoistva obschego resheniya obratnykh kraevykh zadach, Diss. $\dots$ kand. fiz.-matem. nauk, Kazan, 1982