The existence of fixed points of left-continuous monotone operators in spaces with a~regular cone
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 40-47
Voir la notice de l'article provenant de la source Math-Net.Ru
In theorems on the existence of a fixed point of an operator the latter is usually assumed to be continuous. In this paper we prove a theorem with sufficient conditions for the existence of a fixed point of an operator which is not necessarily continuous (possibly it is left-continuous). The obtained theorem with the use of regular cones is applied for proving the existence of a fixed point of a nonliner integral operator. We give an example illustrating the theorem.
Keywords:
left-continuous operator, cone in a Banach space, fixed point of an operator.
@article{IVM_2011_10_a4,
author = {E. Yu. Elenskaya},
title = {The existence of fixed points of left-continuous monotone operators in spaces with a~regular cone},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {40--47},
publisher = {mathdoc},
number = {10},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a4/}
}
TY - JOUR AU - E. Yu. Elenskaya TI - The existence of fixed points of left-continuous monotone operators in spaces with a~regular cone JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 40 EP - 47 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_10_a4/ LA - ru ID - IVM_2011_10_a4 ER -
E. Yu. Elenskaya. The existence of fixed points of left-continuous monotone operators in spaces with a~regular cone. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 40-47. http://geodesic.mathdoc.fr/item/IVM_2011_10_a4/