The existence of fixed points of left-continuous monotone operators in spaces with a regular cone
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 40-47
Cet article a éte moissonné depuis la source Math-Net.Ru
In theorems on the existence of a fixed point of an operator the latter is usually assumed to be continuous. In this paper we prove a theorem with sufficient conditions for the existence of a fixed point of an operator which is not necessarily continuous (possibly it is left-continuous). The obtained theorem with the use of regular cones is applied for proving the existence of a fixed point of a nonliner integral operator. We give an example illustrating the theorem.
Keywords:
left-continuous operator, cone in a Banach space, fixed point of an operator.
@article{IVM_2011_10_a4,
author = {E. Yu. Elenskaya},
title = {The existence of fixed points of left-continuous monotone operators in spaces with a~regular cone},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {40--47},
year = {2011},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a4/}
}
TY - JOUR AU - E. Yu. Elenskaya TI - The existence of fixed points of left-continuous monotone operators in spaces with a regular cone JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 40 EP - 47 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_2011_10_a4/ LA - ru ID - IVM_2011_10_a4 ER -
E. Yu. Elenskaya. The existence of fixed points of left-continuous monotone operators in spaces with a regular cone. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 40-47. http://geodesic.mathdoc.fr/item/IVM_2011_10_a4/
[1] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[2] Birkgof G., Teoriya struktur, In. lit., M., 1952
[3] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR
[4] Engibaryan N. B., “O nepodvizhnoi tochke monotonnogo operatora v kriticheskom sluchae”, Izv. RAN. Ser. matem., 70:5 (2006), 79–96 | MR | Zbl
[5] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR