Solvability of a~periodic boundary value problem for systems of functional differential equations with cyclic matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 17-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider first-order systems of linear functional differential equations with regular operators. For collections of systems of two equations we obtain the general necessary and sufficient conditions for the unique solvability of a periodic boundary value problem. For collections of systems of $n$ equations with cyclic matrices we obtain effective necessary and sufficient conditions for the unique solvability of a periodic boundary value problem.
Keywords: periodic boundary value problem, linear functional differential equations, systems of functional differential equations, unique solvability
Mots-clés : cyclic matrices.
@article{IVM_2011_10_a2,
     author = {E. I. Bravyi},
     title = {Solvability of a~periodic boundary value problem for systems of functional differential equations with cyclic matrices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--27},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a2/}
}
TY  - JOUR
AU  - E. I. Bravyi
TI  - Solvability of a~periodic boundary value problem for systems of functional differential equations with cyclic matrices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 17
EP  - 27
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a2/
LA  - ru
ID  - IVM_2011_10_a2
ER  - 
%0 Journal Article
%A E. I. Bravyi
%T Solvability of a~periodic boundary value problem for systems of functional differential equations with cyclic matrices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 17-27
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a2/
%G ru
%F IVM_2011_10_a2
E. I. Bravyi. Solvability of a~periodic boundary value problem for systems of functional differential equations with cyclic matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 17-27. http://geodesic.mathdoc.fr/item/IVM_2011_10_a2/

[1] Lasota A., Opial Z., “Sur les solutions périodiques des équations différentielles ordinaires”, Ann. Polon. Math., 16 (1964), 69–94 | MR | Zbl

[2] Komlenko Yu. V., Tonkov E. L., “Periodicheskaya kraevaya zadacha dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka”, DAN SSSR, 179:1 (1968), 17–19 | MR | Zbl

[3] Kiguradze I. T., Kusano T., “Usloviya suschestvovaniya i edinstvennosti periodicheskikh reshenii neavtonomnykh differentsialnykh sistem”, Differents. uravneniya, 36:10 (2000), 1436–1442 | MR | Zbl

[4] Kiguradze I. T., “O rezonansnoi periodicheskoi zadache dlya neavtonomnykh differentsialnykh uravnenii vysshikh poryadkov”, Diferents. uravneniya, 44:8 (2008), 1022–1032 | MR | Zbl

[5] Kiguradze I., Lomtatidze A., “Periodic solutions of nonautonomous ordinary differential equations”, Monatsh. Math., 159:3 (2010), 235–252 | DOI | MR | Zbl

[6] Krasnoselskii M. A., Perov A. I., “Ob odnom printsipe suschestvovaniya ogranichennykh, periodicheskikh i pochti-periodicheskikh reshenii u sistemy obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 123:2 (1958), 235–238 | MR

[7] Kiguradze I. T., “O periodicheskikh resheniyakh sistem neavtonomnykh obyknovennykh differentsialnykh uravnenii”, Matem. zametki, 39:4 (1986), 562–575 | MR | Zbl

[8] Ronto A., Ronto M., “On certain symmetry properties of periodic solutions”, Nonlinear Oscillations, 6:1 (2003), 82–107 | DOI | MR

[9] Kiguradze I., “On periodic-type solutions of systems of linear ordinary differential equations”, Abstr. Appl. Anal., 2004:5 (2004), 395–406 | DOI | MR | Zbl

[10] Kiguradze I. T., Mukhigulashvili S. V., “O nelineinykh kraevykh zadachakh dlya dvukhmernykh differentsialnykh sistem”, Differents. uravneniya, 40:6 (2004), 797–806 | MR | Zbl

[11] Kiguradze I., Mukhigulashvili S., “On periodic solutions of two-dimensional nonautonomous differential systems”, Nonlinear Anal., 60 (2005), 241–256 | MR | Zbl

[12] Komlenko Yu. V., Tonkov E. L., “O multiplikatorakh lineinogo periodicheskogo differentsialnogo uravneniya s otklonyayuschimsya argumentom”, Sib. matem. zhurn., 15:4 (1968), 835–844 | MR

[13] Osechkina T. A., “Kriterii odnoznachnoi razreshimosti periodicheskoi kraevoi zadachi dlya funktsionalno-differentsialnogo uravneniya”, Izv. vuzov. Matem., 1994, no. 10, 48–52 | MR | Zbl

[14] Lomtatidze A., Mukhigulashvili S., “On periodic solutions of second order functional differential equations”, Mem. Diff. Equat. Math. Phys. Georgia, 5 (1995), 125–126 | Zbl

[15] Lomtatidze A. G., Khakl R., Puzha B., “O periodicheskoi kraevoi zadache dlya funktsionalno-differentsialnykh uravnenii pervogo poryadka”, Differents. uravneniya, 39:3 (2003), 344–352 | MR | Zbl

[16] Hakl R., “Periodic boundary-value problem for third-order linear functional differential equations”, Ukrainian Math. J., 60:3 (2008), 481–494 | DOI | MR | Zbl

[17] Kiguradze I., Partsvania N., Půža B., “On periodic solutions of higher-order functional differential equations”, Bound. Value Probl., 2008, 389028, 18 pp. | MR | Zbl

[18] Hakl R., Mukhigulashvili S., “A periodic boundary value problem for functional differential equations of higher order”, Georgian Math. J., 16:4 (2009), 651–665 | MR | Zbl

[19] Kiguradze I., Půža B., “On boundary value problems for systems of linear functional differential equations”, Czechoslovak Math. J., 47:122 (1997), 341–373 | DOI | MR | Zbl

[20] Kiguradze I., Půža B., “On periodic solutions of systems of linear functional differential equations”, Arch. Math., 33:2 (1997), 197–212 | MR

[21] Hakl R., “On some boundary value problems for systems of linear functional differential equations”, Electron. J. Qual. Theory Differ. Equ., 1999, no. 10, 16 pp. | MR

[22] Kiguradze I., Půža B., Boundary value problems for systems of linear functional differential equations, Masaryk University, Brno, 2003 | MR | Zbl

[23] Mukhigulashvili S., “On a periodic boundary value problem for cyclic feedback type linear functional differential systems”, Arch. Math., 87:3 (2006), 255–260 | DOI | MR | Zbl

[24] Mukhigulashvili S., Grytsay I., “An optimal condition for the uniqueness of a periodic solution for linear functional differential systems”, Electron. J. Qual. Theory Differ. Equ., 2009, no. 59, 12 pp. | MR

[25] Mukhigulashvili S. V., “O zadache s nelineinymi kraevymi usloviyami dlya sistem funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 46:1 (2010), 47–58 | MR | Zbl

[26] Bravyi E., “On the solvability of the Cauchy problem for systems of two linear functional differential equations”, Mem. Differ. Equat. Math. Phys., 41 (2007), 11–26 | MR | Zbl

[27] Bravyi E., “On the solvability of the Cauchy problem for a first order linear functional differential equation”, Funct. Differ. Equat., 15:1–2 (2008), 95–109 | MR | Zbl

[28] Bravyi E., “On the solvability of the Neumann problem for second order linear functional differential equations”, Funct. Differ. Equat., 16:2 (2009), 201–212 | MR | Zbl

[29] Bravyi E. I., “O razreshimosti periodicheskoi kraevoi zadachi dlya lineinogo funktsionalno-differentsialnogo uravneniya”, Vestn. Udmurt. un-ta. Matem., 2009, no. 3, 12–24

[30] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl