Finite nilpotent groups with relatively large centralizers of noninvariant subgroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 12-16
Voir la notice de l'article provenant de la source Math-Net.Ru
We study groups where every noninvariant subgroup satisfies the following condition: the index of the product of this subgroup and its centralizer in the normalizer of this subgroup divides prime number fixed for the given group. We fully describe two-step nilpotent $p$-groups with the mentioned property.
Mots-clés :
group
Keywords: noninvariant subgroup, centralizer, normalizer, index.
Keywords: noninvariant subgroup, centralizer, normalizer, index.
@article{IVM_2011_10_a1,
author = {V. A. Antonov and T. G. Nozhkina},
title = {Finite nilpotent groups with relatively large centralizers of noninvariant subgroups},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {12--16},
publisher = {mathdoc},
number = {10},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/}
}
TY - JOUR AU - V. A. Antonov AU - T. G. Nozhkina TI - Finite nilpotent groups with relatively large centralizers of noninvariant subgroups JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 12 EP - 16 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/ LA - ru ID - IVM_2011_10_a1 ER -
V. A. Antonov; T. G. Nozhkina. Finite nilpotent groups with relatively large centralizers of noninvariant subgroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 12-16. http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/