Finite nilpotent groups with relatively large centralizers of noninvariant subgroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 12-16
Cet article a éte moissonné depuis la source Math-Net.Ru
We study groups where every noninvariant subgroup satisfies the following condition: the index of the product of this subgroup and its centralizer in the normalizer of this subgroup divides prime number fixed for the given group. We fully describe two-step nilpotent $p$-groups with the mentioned property.
Mots-clés :
group
Keywords: noninvariant subgroup, centralizer, normalizer, index.
Keywords: noninvariant subgroup, centralizer, normalizer, index.
@article{IVM_2011_10_a1,
author = {V. A. Antonov and T. G. Nozhkina},
title = {Finite nilpotent groups with relatively large centralizers of noninvariant subgroups},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {12--16},
year = {2011},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/}
}
TY - JOUR AU - V. A. Antonov AU - T. G. Nozhkina TI - Finite nilpotent groups with relatively large centralizers of noninvariant subgroups JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 12 EP - 16 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/ LA - ru ID - IVM_2011_10_a1 ER -
V. A. Antonov; T. G. Nozhkina. Finite nilpotent groups with relatively large centralizers of noninvariant subgroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 12-16. http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/
[1] Antonov V. A., “Lokalno konechnye gruppy s malymi normalizatorami. II”, Izv. vuzov. Matem., 1989, no. 1, 12–14 | MR | Zbl
[2] Amineva N. N., “Konechnye 2-gruppy s otnositelno bolshimi tsentralizatorami neinvariantnykh podgrupp”, Vestn. YuUrGU. Ser. matem., fizika, khimiya, 2003, no. 6, 17–19
[3] Parmeggiani G., Stellmacher B., “$p$-groups of small breadth”, J. Algebra, 213:1 (1999), 52–68 | DOI | MR | Zbl