Finite nilpotent groups with relatively large centralizers of noninvariant subgroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 12-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study groups where every noninvariant subgroup satisfies the following condition: the index of the product of this subgroup and its centralizer in the normalizer of this subgroup divides prime number fixed for the given group. We fully describe two-step nilpotent $p$-groups with the mentioned property.
Mots-clés : group
Keywords: noninvariant subgroup, centralizer, normalizer, index.
@article{IVM_2011_10_a1,
     author = {V. A. Antonov and T. G. Nozhkina},
     title = {Finite nilpotent groups with relatively large centralizers of noninvariant subgroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--16},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - T. G. Nozhkina
TI  - Finite nilpotent groups with relatively large centralizers of noninvariant subgroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 12
EP  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/
LA  - ru
ID  - IVM_2011_10_a1
ER  - 
%0 Journal Article
%A V. A. Antonov
%A T. G. Nozhkina
%T Finite nilpotent groups with relatively large centralizers of noninvariant subgroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 12-16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/
%G ru
%F IVM_2011_10_a1
V. A. Antonov; T. G. Nozhkina. Finite nilpotent groups with relatively large centralizers of noninvariant subgroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 12-16. http://geodesic.mathdoc.fr/item/IVM_2011_10_a1/

[1] Antonov V. A., “Lokalno konechnye gruppy s malymi normalizatorami. II”, Izv. vuzov. Matem., 1989, no. 1, 12–14 | MR | Zbl

[2] Amineva N. N., “Konechnye 2-gruppy s otnositelno bolshimi tsentralizatorami neinvariantnykh podgrupp”, Vestn. YuUrGU. Ser. matem., fizika, khimiya, 2003, no. 6, 17–19

[3] Parmeggiani G., Stellmacher B., “$p$-groups of small breadth”, J. Algebra, 213:1 (1999), 52–68 | DOI | MR | Zbl