Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain sufficient conditions for the existence of a unique positive radially symmetric solution to the Dirichlet problem for quasilinear equation of elliptic type in many-dimensional ball.
Mots-clés :
positive solution
Keywords: radially symmetric solution, Dirichlet problem, differential equation.
Keywords: radially symmetric solution, Dirichlet problem, differential equation.
@article{IVM_2011_10_a0,
author = {E. I. Abduragimov},
title = {Uniqueness of a~positive solution to the {Dirichlet} problem for a~quasilinear equation with $p${-Laplacian} in a~ball},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--11},
publisher = {mathdoc},
number = {10},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/}
}
TY - JOUR AU - E. I. Abduragimov TI - Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 3 EP - 11 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/ LA - ru ID - IVM_2011_10_a0 ER -
%0 Journal Article %A E. I. Abduragimov %T Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2011 %P 3-11 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/ %G ru %F IVM_2011_10_a0
E. I. Abduragimov. Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/