Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the existence of a unique positive radially symmetric solution to the Dirichlet problem for quasilinear equation of elliptic type in many-dimensional ball.
Mots-clés : positive solution
Keywords: radially symmetric solution, Dirichlet problem, differential equation.
@article{IVM_2011_10_a0,
     author = {E. I. Abduragimov},
     title = {Uniqueness of a~positive solution to the {Dirichlet} problem for a~quasilinear equation with $p${-Laplacian} in a~ball},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 11
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/
LA  - ru
ID  - IVM_2011_10_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-11
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/
%G ru
%F IVM_2011_10_a0
E. I. Abduragimov. Uniqueness of a~positive solution to the Dirichlet problem for a~quasilinear equation with $p$-Laplacian in a~ball. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2011_10_a0/

[1] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[2] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[3] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | Zbl

[4] Pokhozhaev S. I., “Ob odnoi zadache Ovsyannikova”, PMTF, 1989, no. 2, 5–10 | MR

[5] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl

[6] Cheng Kuo-Shung, Lin Jenn-Tsann, “On the elliptic equations $\Delta u=K(x)u^\sigma$ and $\Delta u=K(x)e^{2u}$”, Trans. Amer. Math. Soc., 304:2 (1987), 639–668 | MR | Zbl

[7] Galakhov E. I., “Polozhitelnye resheniya kvazilineinogo ellipticheskogo uravneniya”, Matem. zametki, 78:2 (2005), 202–211 | MR | Zbl

[8] Abduragimov E. I., “O polozhitelnom radialno-simmetrichnom reshenii zadachi Dirikhle dlya odnogo nelineinogo uravneniya i chislennom metode ego polucheniya”, Izv. vuzov. Matem., 1997, no. 5, 3–6 | MR | Zbl

[9] Abduragimov E. I., “O edinstvennosti polozhitelnogo radialno-simetrichnogo resheniya v share zadachi Dirikhle dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 2008, no. 12, 3–6 | MR | Zbl

[10] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982 | MR