Univalent functions without common values
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 86-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we establish inequalities involving moduli of derivatives $|f_k'(0)|$ of functions $f_k$ univalent in the unit disk $|z|1$ having no common values and translating zero in a point on the segment $[-1,1]$, $k=1,\dots,n$. We estimate $f_k$ by means of Schwarzian derivatives.
Keywords: univalent functions, conformal radius, Schwarzian derivative.
Mots-clés : extremal partitions
@article{IVM_2010_9_a8,
     author = {D. A. Kirillova},
     title = {Univalent functions without common values},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--89},
     publisher = {mathdoc},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a8/}
}
TY  - JOUR
AU  - D. A. Kirillova
TI  - Univalent functions without common values
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 86
EP  - 89
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_9_a8/
LA  - ru
ID  - IVM_2010_9_a8
ER  - 
%0 Journal Article
%A D. A. Kirillova
%T Univalent functions without common values
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 86-89
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_9_a8/
%G ru
%F IVM_2010_9_a8
D. A. Kirillova. Univalent functions without common values. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 86-89. http://geodesic.mathdoc.fr/item/IVM_2010_9_a8/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo premennogo, Nauka, M., 1966 | MR | Zbl

[2] Alenitsyn Yu. E., “Ob odnolistnykh funktsiyakh bez obschikh znachenii v mnogosvyaznoi oblasti”, Tr. matem. in-ta im. V. A. Steklova, 94, 1968, 4–18 | MR | Zbl

[3] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl

[4] Kuzmina G. V., “Metody geometricheskoi teorii funktsii, I”, Algebra i analiz, 9:3 (1997), 41–103 | MR | Zbl

[5] Kuzmina G. V., “Metody geometricheskoi teorii funktsii, II”, Algebra i analiz, 9:5 (1997), 1–50 | MR | Zbl

[6] Bakhtin A. K., Bakhtina G. P., Zelinskii Yu. B., Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize, Pratsi In-tu matematiki NAN Ukraïni, 73, In-t matematiki NAN Ukraïni, 2008, 308 pp. | MR | Zbl

[7] Dubinin V. N., “Emkosti kondensatorov, obobscheniya lemm Gretsha i simmetrizatsiya”, Zap. nauchn. semin. POMI, 337, 2006, 73–100 | MR | Zbl

[8] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[9] Kheiman V. K., Mnogolistnye funktsii, In. lit., M., 1960 | MR

[10] Dubinin V. N., “O kvadratichnykh formakh, porozhdennykh funktsiyami Grina i Robena”, Matem. sb., 200:10 (2009), 25–38 | MR | Zbl

[11] Kurant R., Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, In. lit., M., 1953