On the structure of infinitesimal almost projective transformations in the tangent bundle of a~general space of path
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 71-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the necessary conditions for a vector field on a tangent bundle to be an infinitesimal almost projective transformation of a general path space in the case when sets of autoparallel curves are the Yano–Okubo–Kagan natural lift of tensor fields of the base manifold.
Keywords: infinitesimal almost projective transformation, general path space, tangent bundle, Yano–Okubo–Kagan natural lift.
@article{IVM_2010_9_a5,
     author = {A. Yu. Danshin},
     title = {On the structure of infinitesimal almost projective transformations in the tangent bundle of a~general space of path},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--75},
     publisher = {mathdoc},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a5/}
}
TY  - JOUR
AU  - A. Yu. Danshin
TI  - On the structure of infinitesimal almost projective transformations in the tangent bundle of a~general space of path
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 71
EP  - 75
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_9_a5/
LA  - ru
ID  - IVM_2010_9_a5
ER  - 
%0 Journal Article
%A A. Yu. Danshin
%T On the structure of infinitesimal almost projective transformations in the tangent bundle of a~general space of path
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 71-75
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_9_a5/
%G ru
%F IVM_2010_9_a5
A. Yu. Danshin. On the structure of infinitesimal almost projective transformations in the tangent bundle of a~general space of path. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 71-75. http://geodesic.mathdoc.fr/item/IVM_2010_9_a5/

[1] Danshin A. Yu., “Infinitezimalnye proektivnye preobrazovaniya v kasatelnom rassloenii finslerovykh mnogoobrazii”, Izv. vuzov. Matematika, 1995, no. 7, 12–21 | MR | Zbl

[2] Danshin A. Yu., “Infinitezimalnye proektivnye preobrazovaniya s estestvennym liftom svyaznosti obschego prostranstva putei”, Izv. vuzov. Matematika, 1997, no. 9, 8–12 | MR | Zbl

[3] Danshin A. Yu., “Infinitezimalnye konformnye preobrazovaniya v kasatelnom rassloenii finslerovykh mnogoobrazii”, Izv. vuzov. Matematika, 1998, no. 7, 11–17 | MR

[4] Rund Kh., Differentsialnaya geometriya finslerovykh prostranstv, Nauka, M., 1981 | MR | Zbl

[5] Aminova A. V., “Opredelenie beskonechno malykh pochti proektivnykh preobrazovanii”, Gravitatsiya i teoriya otnositelnosti, 13, 1976, 3–9 | MR

[6] Aminova A. V., “Gruppy pochti proektivnykh dvizhenii prostranstv affinnoi svyaznosti”, Izv. vuzov. Matematika, 1979, no. 4, 71–75 | MR | Zbl

[7] Kagan F. I., “K teorii liftov tenzornykh polei iz mnogoobraziya v ego kasatelnyi puchok”, Izv. vuzov. Matematika, 1969, no. 9, 37–46 | MR | Zbl

[8] Yano K., Okubo T., “On the tangent bundles of generalized spaces of paths”, Rend. Mat. (6), 4:2 (1971), 327–348 | MR | Zbl

[9] Kagan F. I., “Affinnye svyaznosti na kasatelnom rassloenii”, Izv. vuzov. Matematika, 1975, no. 2, 31–42 | MR | Zbl

[10] Nomidzu K., Gruppy Li i differentsialnaya geometriya, In. lit., M., 1960 | MR