The solvability of the initial problem for a~degenerate linear hybrid system with variable coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 57-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear hybrid system with variable coefficients and known mode switching moments under the assumption that matrices at the derivative of the desired vector function are identically degenerate. We obtain the necessary and sufficient conditions for the existence of a piecewise smooth solution (either continuous or not in its definition domain) for the initial problem. We study an equivalent structural form of a nonstationary system of linear differential-algebraic equations with time varying coefficients. We propose a constructive algorithm for obtaining such a form even if the rank of the matrix at the derivative is not constant.
Keywords: hybrid system, differential-algebraic equations, solvability, consistent initial data.
Mots-clés : equivalent transformation
@article{IVM_2010_9_a4,
     author = {A. A. Shcheglova},
     title = {The solvability of the initial problem for a~degenerate linear hybrid system with variable coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--70},
     publisher = {mathdoc},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a4/}
}
TY  - JOUR
AU  - A. A. Shcheglova
TI  - The solvability of the initial problem for a~degenerate linear hybrid system with variable coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 57
EP  - 70
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_9_a4/
LA  - ru
ID  - IVM_2010_9_a4
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%T The solvability of the initial problem for a~degenerate linear hybrid system with variable coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 57-70
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_9_a4/
%G ru
%F IVM_2010_9_a4
A. A. Shcheglova. The solvability of the initial problem for a~degenerate linear hybrid system with variable coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 57-70. http://geodesic.mathdoc.fr/item/IVM_2010_9_a4/

[1] Barton P. I., Lee Ch. K., “Modeling, simulation, sensitivity analysis, and optimization of hybrid systems”, ACM Trans. on Model. and Comput. Simul., 12:4 (2002), 256–289 | DOI

[2] Campbell S. L., Petzold L. R., “Canonical forms and solvable singular systems of differential equations”, SIAM J. Alg. Discrete Methods, 4:4 (1983), 517–521 | DOI | MR | Zbl

[3] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR | Zbl

[4] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR | Zbl

[5] Campbell S. L., Terrell W. J., “Observability of linear time-varying descriptor systems”, SIAM J. Matrix Anal. Appl., 12:3 (1991), 484–496 | DOI | MR | Zbl

[6] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[7] Brenan K. E., Campbell S. L., Petzold L. D., Numerical solution of initial-value problems in differential-algebraic equations, Classics in Applied Mathematics, 14, SIAM, Philadelphia, PA, 1996 | MR | Zbl

[8] Shcheglova A. A., “On observability of singular linear hybrid systems”, Nonlinear Anal., 62 (2005), 1419–1436 | DOI | MR | Zbl

[9] Kunkel P., Mehrmann V., “Canonical forms for linear differential-algebraic equations with variable coefficients”, J. Comput. Appl. Math., 56 (1995), 225–251 | DOI | MR