Stability of linear functional differential systems with a multivalued feedback with respect to impulse disturbances
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 43-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear controlled functional differential system with a linear feedback channel. The system is assumed to be exponentially stable in the closed state. The feedback is assumed to be nonideal, which consists in an uncertain delay either distributed or not. The only assumption is that this delay is sufficiently small. Such a nonideal system is described by a functional differential inclusion of special type. A generalized derivative of a function of locally bounded variation is admitted to the input of the system as a free term. We obtain exponential estimates for solutions of the resulting system.
Keywords: functional differential inclusion, Cauchy function, exponential stability, multivalued delay.
@article{IVM_2010_9_a3,
     author = {V. Z. Tsalyuk},
     title = {Stability of linear functional differential systems with a multivalued feedback with respect to impulse disturbances},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--56},
     publisher = {mathdoc},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a3/}
}
TY  - JOUR
AU  - V. Z. Tsalyuk
TI  - Stability of linear functional differential systems with a multivalued feedback with respect to impulse disturbances
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 43
EP  - 56
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_9_a3/
LA  - ru
ID  - IVM_2010_9_a3
ER  - 
%0 Journal Article
%A V. Z. Tsalyuk
%T Stability of linear functional differential systems with a multivalued feedback with respect to impulse disturbances
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 43-56
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_9_a3/
%G ru
%F IVM_2010_9_a3
V. Z. Tsalyuk. Stability of linear functional differential systems with a multivalued feedback with respect to impulse disturbances. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 43-56. http://geodesic.mathdoc.fr/item/IVM_2010_9_a3/

[1] Azbelev N. V., Simonov P. M., Ustoichivost reshenii uravnenii s obyknovennymi proizvodnymi, Izd-vo Perm. un-ta, Perm, 2001

[2] Tsalyuk V. Z., “A linear functional differential equation with distributions in the input”, Electron. J. Differ. Equat., 2003, 104, 23 pp. http://ejde.math.unt.edu | MR | Zbl

[3] Tsalyuk V. Z., “Svoistva reshenii funktsionalno-differentsialnykh uravnenii s meroi”, Differents. uravneniya, 40:3 (2004), 346–355 | MR | Zbl

[4] Tyshkevich V. A., Nekotorye voprosy teorii ustoichivosti funktsionalno-differentsialnykh uravnenii, Nauk. dumka, Kiev, 1981 | MR | Zbl

[5] Tsalyuk V. Z., “Stability of linear functional differential systems with multivalued delay feedback”, Electron. J. Differ. Equat., 2007, 36, 14 pp. http://ejde.math.unt.edu | MR | Zbl

[6] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t komp. issledovanii, M., 2002

[7] Tsalyuk V. Z., “Multivalued Stieltjes integral for discontinuous functions of bounded variation”, Funct. Differ. Equat., 9:3–4 (2002), 551–576 | MR | Zbl

[8] Castaing C., Valadier M., “Convex analysis and measurable multifunctions”, Lect. Notes Math., 580, Springer-Verlag, Berlin, 1977 | MR | Zbl

[9] Tsalyuk V. Z., “Stability of linear systems with discrete feedback and impulse input”, Proceedings of Intern. conf. “Dynamical Systems and Applications” (July 05–10, 2004, Antalya), 2005, 671–678

[10] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967 | Zbl