Finite-dimensional homogeneously simple algebras of associative type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 36-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe finite-dimensional homogeneously simple algebras of associative type whose 1-component is a full matrix algebra. In addition, we prove that a finite-dimensional division ring of associative type over an algebraically closed field is isomorphic to a group algebra.
Keywords: homogeneously simple algebra of associative type, division ring of associative type.
@article{IVM_2010_9_a2,
     author = {N. A. Koreshkov},
     title = {Finite-dimensional homogeneously simple algebras of associative type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--42},
     publisher = {mathdoc},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a2/}
}
TY  - JOUR
AU  - N. A. Koreshkov
TI  - Finite-dimensional homogeneously simple algebras of associative type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 36
EP  - 42
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_9_a2/
LA  - ru
ID  - IVM_2010_9_a2
ER  - 
%0 Journal Article
%A N. A. Koreshkov
%T Finite-dimensional homogeneously simple algebras of associative type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 36-42
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_9_a2/
%G ru
%F IVM_2010_9_a2
N. A. Koreshkov. Finite-dimensional homogeneously simple algebras of associative type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 36-42. http://geodesic.mathdoc.fr/item/IVM_2010_9_a2/

[1] Bahturin Y., Zaicev M., “Identities of graded algebras”, J. Algebra, 205:1 (1998), 1–12 | DOI | MR | Zbl

[2] Bakhturin Yu. A., Zaitsev M. V., Segal S. K., “$G$-tozhdestva neassotsiativnykh algebr”, Matem. sb., 190:11 (1999), 3–14 | MR | Zbl

[3] Koreshkov N. A., “O nilpotentnosti i razlozhenii algebr assotsiativnogo tipa”, Izv. vuzov. Matematika, 2006, no. 9, 34–42 | MR

[4] Koreshkov N. A., “Ob odnom klasse algebr assotsiativnogo tipa”, Izv. vuzov. Matematika, 2007, no. 3, 38–46 | MR | Zbl

[5] Koreshkov N. A., “Moduli i idealy algebr assotsiativnogo tipa”, Izv. vuzov. Matematika, 2008, no. 8, 25–34 | MR | Zbl

[6] Bakhturin Yu. A., Zaitsev M. V., Segal S. K., “Konechnomernye prostye graduirovannye algebry”, Matem. sb., 199:7 (2008), 21–40 | MR