Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_9_a0, author = {V. A. Abilov and F. V. Abilova and M. V. Abilov}, title = {Some inverse theorems for approximation of functions by {Fourier--Laguerre} sums}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--9}, publisher = {mathdoc}, number = {9}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a0/} }
TY - JOUR AU - V. A. Abilov AU - F. V. Abilova AU - M. V. Abilov TI - Some inverse theorems for approximation of functions by Fourier--Laguerre sums JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 3 EP - 9 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_9_a0/ LA - ru ID - IVM_2010_9_a0 ER -
%0 Journal Article %A V. A. Abilov %A F. V. Abilova %A M. V. Abilov %T Some inverse theorems for approximation of functions by Fourier--Laguerre sums %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 3-9 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_9_a0/ %G ru %F IVM_2010_9_a0
V. A. Abilov; F. V. Abilova; M. V. Abilov. Some inverse theorems for approximation of functions by Fourier--Laguerre sums. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2010_9_a0/
[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[2] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[3] Abilov V. A., “On the best approximation of functions of many variables by algebraic polynomials”, East J. Approx., 2:4 (1996), 477–497 | MR | Zbl
[4] Rzhavinskaya E. V., “O priblizhenii funktsii v srednem summami Fure–Lagerra”, Izv. vuzov. Matematika, 1979, no. 11, 87–93 | MR | Zbl
[5] Abilov V. A., “Priblizhenie funktsii summami Fure–Lagerra”, Matem. zametki, 57:2 (1995), 163–170 | MR | Zbl
[6] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960