Real subalgebras in the matrix Lie algebra $M(2,\mathbf C)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 30-35
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we classify all real subalgebras (up to the conjugation) of dimensions 5, 6, and 7 in the Lie algebra of all complex matrices of the second order. In combination with recent results by F. A. Belykh, A. Yu. Borzakov, and A. V. Loboda (Russian Mathematics (Iz. VUZ) 51 (5), 11–23 (2007)) this gives a complete classification of all subalgebras in the specified matrix Lie algebra. The description is presented in two different forms, namely, in the framework of the theory of Lie algebras and their subalgebras, on one hand, and in the matrix form, on the other hand.
Keywords:
Lie algebra
Mots-clés : complex matrices, Lie subalgebra, matrix conjugation.
Mots-clés : complex matrices, Lie subalgebra, matrix conjugation.
@article{IVM_2010_8_a2,
author = {V. V. Gorbatsevich},
title = {Real subalgebras in the matrix {Lie} algebra~$M(2,\mathbf C)$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {30--35},
year = {2010},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a2/}
}
V. V. Gorbatsevich. Real subalgebras in the matrix Lie algebra $M(2,\mathbf C)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 30-35. http://geodesic.mathdoc.fr/item/IVM_2010_8_a2/
[1] Belykh F. A., Borzakov A. Yu., Loboda A. V., “Veschestvennye podalgebry malykh razmernostei matrichnoi algebry Li $M(2,\mathbb C)$”, Izv. vuzov. Matematika, 2007, no. 5, 13–24 | MR | Zbl
[2] Pushmina N. S., Chernykh S. S., “Klassifikatsiya dvumernykh veschestvennykh podalgebr algebry Li $M(2,\mathbf C)$”, Tr. 5-i mezhdunar. konf. molodykh uchenykh i studentov “Aktualnye problemy sovremennoi nauki” (Samara, 2004), 104–107
[3] Loboda A. V., “Three-dimensional Lie subalgebras of matrix algebra $M(2,\mathbb C)$”, Russian J. of Math. Phys., 10:4 (2003), 495–500 | MR | Zbl
[4] Hofmann K., “Lie algebras with subalgebras of codimension one”, Illinois J. Math., 9 (1965), 636–643 | MR | Zbl