Real subalgebras in the matrix Lie algebra~$M(2,\mathbf C)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we classify all real subalgebras (up to the conjugation) of dimensions 5, 6, and 7 in the Lie algebra of all complex matrices of the second order. In combination with recent results by F. A. Belykh, A. Yu. Borzakov, and A. V. Loboda (Russian Mathematics (Iz. VUZ) 51 (5), 11–23 (2007)) this gives a complete classification of all subalgebras in the specified matrix Lie algebra. The description is presented in two different forms, namely, in the framework of the theory of Lie algebras and their subalgebras, on one hand, and in the matrix form, on the other hand.
Keywords: Lie algebra
Mots-clés : complex matrices, Lie subalgebra, matrix conjugation.
@article{IVM_2010_8_a2,
     author = {V. V. Gorbatsevich},
     title = {Real subalgebras in the matrix {Lie} algebra~$M(2,\mathbf C)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--35},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Real subalgebras in the matrix Lie algebra~$M(2,\mathbf C)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 30
EP  - 35
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_8_a2/
LA  - ru
ID  - IVM_2010_8_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Real subalgebras in the matrix Lie algebra~$M(2,\mathbf C)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 30-35
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_8_a2/
%G ru
%F IVM_2010_8_a2
V. V. Gorbatsevich. Real subalgebras in the matrix Lie algebra~$M(2,\mathbf C)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 30-35. http://geodesic.mathdoc.fr/item/IVM_2010_8_a2/

[1] Belykh F. A., Borzakov A. Yu., Loboda A. V., “Veschestvennye podalgebry malykh razmernostei matrichnoi algebry Li $M(2,\mathbb C)$”, Izv. vuzov. Matematika, 2007, no. 5, 13–24 | MR | Zbl

[2] Pushmina N. S., Chernykh S. S., “Klassifikatsiya dvumernykh veschestvennykh podalgebr algebry Li $M(2,\mathbf C)$”, Tr. 5-i mezhdunar. konf. molodykh uchenykh i studentov “Aktualnye problemy sovremennoi nauki” (Samara, 2004), 104–107

[3] Loboda A. V., “Three-dimensional Lie subalgebras of matrix algebra $M(2,\mathbb C)$”, Russian J. of Math. Phys., 10:4 (2003), 495–500 | MR | Zbl

[4] Hofmann K., “Lie algebras with subalgebras of codimension one”, Illinois J. Math., 9 (1965), 636–643 | MR | Zbl