The continuous dependence of solutions to Volterra equations with locally contracting operators on parameters
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 16-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Volterra equation in a functional space we obtain conditions for the unique existence of a global or maximally extended solution and its continuous dependence on equation parameters. Based on these results, we state conditions for the solvability of the Cauchy problem for a differential equation with delay and the continuous dependence of solutions on the right-hand side of the equation, on the delay, on the initial condition, and the history.
Keywords: Volterra operators, continuous dependence of solutions to equations on parameters, locally contracting operators, differential equations with delay.
@article{IVM_2010_8_a1,
     author = {E. O. Burlakov and E. S. Zhukovskii},
     title = {The continuous dependence of solutions to {Volterra} equations with locally contracting operators on parameters},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--29},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a1/}
}
TY  - JOUR
AU  - E. O. Burlakov
AU  - E. S. Zhukovskii
TI  - The continuous dependence of solutions to Volterra equations with locally contracting operators on parameters
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 16
EP  - 29
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_8_a1/
LA  - ru
ID  - IVM_2010_8_a1
ER  - 
%0 Journal Article
%A E. O. Burlakov
%A E. S. Zhukovskii
%T The continuous dependence of solutions to Volterra equations with locally contracting operators on parameters
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 16-29
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_8_a1/
%G ru
%F IVM_2010_8_a1
E. O. Burlakov; E. S. Zhukovskii. The continuous dependence of solutions to Volterra equations with locally contracting operators on parameters. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 16-29. http://geodesic.mathdoc.fr/item/IVM_2010_8_a1/

[1] Vainikko G. M., “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 16, 1979, 5–53 | MR | Zbl

[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[3] Bokshtein M. F., “Teoremy suschestvovaniya i edinstvennosti reshenii sistem obyknovennykh differentsialnykh uravnenii”, Uchen. zapiski MGU. Matem., 15, 1939, 3–72

[4] Vorel Z., “Continuous dependence on parameters”, J. Nonlinear Anal. Theory Methods Appl., 23:2 (1981), 373–380 | DOI | MR

[5] Petrov N. N., “Nekotorye dostatochnye usloviya nepreryvnoi zavisimosti reshenii differentsialnogo uravneniya ot parametra”, Vestn. LGU. Ser. matem., 17:4(19) (1962), 26–40 | MR | Zbl

[6] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[7] Kartak K., “A theorem on continuous dependence on a parameter”, Časopis pěstov. matem., 91:2 (1966), 178–184 | MR | Zbl

[8] Kartak K., “Continuous dependence on parameters and generalized solutions of ordinary differential equations”, Beitr. Anal., 9 (1976), 39–41 | MR | Zbl

[9] Artstein Z., “Continuous dependence of solutions of operator equations. I”, Trans. Amer. Math. Soc., 231:1 (1977), 143–166 | DOI | MR | Zbl

[10] Jarnik J., “On a certain modification on the theorem on the continuous dependence on a parameter”, Časopis pěstov. matem., 86:4 (1961), 415–424 | MR | Zbl

[11] Kurtsveil Ya., Vorel Z., “O nepreryvnoi zavisimosti reshenii differentsialnykh uravnenii ot parametra”, Chekhosl. matem. zhurn., 7:4 (1957), 568–583

[12] Tikhonov A. N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byul. Mosk. un-ta. Sekts. A, 1:8 (1938), 1–25 | MR | Zbl

[13] Zhukovskii E. S., “Nelineinoe uravnenie Volterra v banakhovom funktsionalnom prostranstve”, Izv. vuzov. Matematika, 2005, no. 10, 17–28 | MR

[14] Zhukovskii E. S., “Nepreryvnaya zavisimost ot parametrov reshenii uravnenii Volterra”, Matem. sb., 197:10 (2006), 33–56 | MR | Zbl

[15] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[16] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR