Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_7_a6, author = {A. N. Frolov}, title = {Presentations of the successor relation of computably linear ordering}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {73--85}, publisher = {mathdoc}, number = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_7_a6/} }
A. N. Frolov. Presentations of the successor relation of computably linear ordering. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 73-85. http://geodesic.mathdoc.fr/item/IVM_2010_7_a6/
[1] Harizanov V., Degree spectrum of a recursive relation on a recursive structure, PhD dissertation, University of Wisconsin, Madison, 1987
[2] Hirshfeldt D., “Degree spectra of relations on computable structures in the presence of $\Delta^0_2$ isomorphisms”, J. Symb. Logic, 67:2 (2002), 697–720 | DOI | MR
[3] Chubb J., Frolov A., Harizanov V., “Degree spectra of the successor relation of computable linear orderings”, Archive for Mathematical Logic, 48:1 (2009), 7–13 | DOI | MR | Zbl
[4] Downey R., Moses M., “Recursive linear orders with incomplete successivities”, Trans. Amer. Math. Soc., 326:2 (1991), 653–668 | DOI | MR | Zbl
[5] Soar R. I., Vychislimo perechislimye mnozhestva i stepeni, per. s angl., Kazansk. matem. o-vo, Kazan, 2000 | MR | Zbl