Functional equations in geometry of two sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 64-72
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve a functional equation connected with deformations of the canonical form of a metric function giving on one-dimensional manifolds the geometry of two sets (physical structure) of rank (2,2). We study four types of such deformations.
Keywords:
functional equation, geometry of two sets (physical structure), deformation of metric function.
@article{IVM_2010_7_a5,
author = {G. G. Mikhailichenko},
title = {Functional equations in geometry of two sets},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {64--72},
year = {2010},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_7_a5/}
}
G. G. Mikhailichenko. Functional equations in geometry of two sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 64-72. http://geodesic.mathdoc.fr/item/IVM_2010_7_a5/
[1] Mikhailichenko G. G., “Fenomenologicheskaya i gruppovaya simmetrii v geometrii dvukh mnozhestv (teorii fizicheskikh struktur)”, DAN SSSR, 284:1 (1985), 39–43 | MR
[2] Kulakov Yu. I., “O novom vide simmetrii, lezhaschei v osnovanii fizicheskikh teorii fenomenologicheskogo tipa”, DAN SSSR, 201:3 (1971), 570–572
[3] Kulakov Yu. I., “Matematicheskaya formulirovka teorii fizicheskikh struktur”, Sib. matem. zhurn., 12:5 (1971), 1142–1145 | MR | Zbl
[4] Mikhailichenko G. G., Muradov R. M., Fizicheskie struktury kak geometrii dvukh mnozhestv, GAGU, Gorno-Altaisk, 2008
[5] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1963 | MR