The Cauchy problem for evolution equations with the Bessel operator of infinite order.~II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the correct solvability of the Cauchy problem for singular evolution equations of infinite order in classes of initial conditions that are generalized functions like ultra-distributions (analytic functionals).
Keywords: Cauchy problem, Bessel operator of infinite order.
Mots-clés : evolution equation, distribution
@article{IVM_2010_7_a2,
     author = {V. V. Gorodestkii and O. V. Martynyuk},
     title = {The {Cauchy} problem for evolution equations with the {Bessel} operator of infinite {order.~II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--42},
     publisher = {mathdoc},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/}
}
TY  - JOUR
AU  - V. V. Gorodestkii
AU  - O. V. Martynyuk
TI  - The Cauchy problem for evolution equations with the Bessel operator of infinite order.~II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 31
EP  - 42
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/
LA  - ru
ID  - IVM_2010_7_a2
ER  - 
%0 Journal Article
%A V. V. Gorodestkii
%A O. V. Martynyuk
%T The Cauchy problem for evolution equations with the Bessel operator of infinite order.~II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 31-42
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/
%G ru
%F IVM_2010_7_a2
V. V. Gorodestkii; O. V. Martynyuk. The Cauchy problem for evolution equations with the Bessel operator of infinite order.~II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 31-42. http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/

[1] Gorodetskii V. V., Martynyuk O. V., “Zadacha Koshi dlya evolyutsionnykh uravnenii s operatorom Besselya beskonechnogo poryadka, I”, Izv. vuzov. Matematika, 2010, no. 6, 3–15

[2] Gurevich B. L., “Nekotorye prostranstva osnovnykh i obobschennykh funktsii i problema Koshi dlya konechno-raznostnykh sistem”, DAN SSSR, 99:6 (1954), 893–896

[3] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR

[4] Gelfand I. M., Shilov G. E., “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti zadachi Koshi”, UMN, 8:6 (1953), 3–54 | MR | Zbl

[5] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnym operatorom Besselya”, Matem. sb., 36(78):2 (1955), 299–310 | MR | Zbl

[6] Krekhivskii V. V., “Teoremy edinstvennosti reshenii zadachi Koshi dlya uravnenii s operatorom Besselya”, Matem. modelir. fiz. prots., In-t matematiki AN USSR, Kiev, 1989, 82–86 | MR

[7] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR

[8] Matiichuk M. I., Parabolichni singulyarni kraiovi zadachi, Institut matematiki NAN Ukraïni, Kiïv, 1999