The Cauchy problem for evolution equations with the Bessel operator of infinite order. II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 31-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the correct solvability of the Cauchy problem for singular evolution equations of infinite order in classes of initial conditions that are generalized functions like ultra-distributions (analytic functionals).
Keywords: Cauchy problem, Bessel operator of infinite order.
Mots-clés : evolution equation, distribution
@article{IVM_2010_7_a2,
     author = {V. V. Gorodestkii and O. V. Martynyuk},
     title = {The {Cauchy} problem for evolution equations with the {Bessel} operator of infinite {order.~II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--42},
     year = {2010},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/}
}
TY  - JOUR
AU  - V. V. Gorodestkii
AU  - O. V. Martynyuk
TI  - The Cauchy problem for evolution equations with the Bessel operator of infinite order. II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 31
EP  - 42
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/
LA  - ru
ID  - IVM_2010_7_a2
ER  - 
%0 Journal Article
%A V. V. Gorodestkii
%A O. V. Martynyuk
%T The Cauchy problem for evolution equations with the Bessel operator of infinite order. II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 31-42
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/
%G ru
%F IVM_2010_7_a2
V. V. Gorodestkii; O. V. Martynyuk. The Cauchy problem for evolution equations with the Bessel operator of infinite order. II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 31-42. http://geodesic.mathdoc.fr/item/IVM_2010_7_a2/

[1] Gorodetskii V. V., Martynyuk O. V., “Zadacha Koshi dlya evolyutsionnykh uravnenii s operatorom Besselya beskonechnogo poryadka, I”, Izv. vuzov. Matematika, 2010, no. 6, 3–15

[2] Gurevich B. L., “Nekotorye prostranstva osnovnykh i obobschennykh funktsii i problema Koshi dlya konechno-raznostnykh sistem”, DAN SSSR, 99:6 (1954), 893–896

[3] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR

[4] Gelfand I. M., Shilov G. E., “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti zadachi Koshi”, UMN, 8:6 (1953), 3–54 | MR | Zbl

[5] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnym operatorom Besselya”, Matem. sb., 36(78):2 (1955), 299–310 | MR | Zbl

[6] Krekhivskii V. V., “Teoremy edinstvennosti reshenii zadachi Koshi dlya uravnenii s operatorom Besselya”, Matem. modelir. fiz. prots., In-t matematiki AN USSR, Kiev, 1989, 82–86 | MR

[7] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR

[8] Matiichuk M. I., Parabolichni singulyarni kraiovi zadachi, Institut matematiki NAN Ukraïni, Kiïv, 1999