Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_7_a0, author = {P. V. Vinogradova}, title = {Error estimates for projection-difference methods for differential equations with differentiable operators}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--15}, publisher = {mathdoc}, number = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_7_a0/} }
TY - JOUR AU - P. V. Vinogradova TI - Error estimates for projection-difference methods for differential equations with differentiable operators JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 3 EP - 15 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_7_a0/ LA - ru ID - IVM_2010_7_a0 ER -
%0 Journal Article %A P. V. Vinogradova %T Error estimates for projection-difference methods for differential equations with differentiable operators %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 3-15 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_7_a0/ %G ru %F IVM_2010_7_a0
P. V. Vinogradova. Error estimates for projection-difference methods for differential equations with differentiable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2010_7_a0/
[1] Oya P. E., “O skhodimosti i ustoichivosti metoda Galërkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Uchen. zap. Tartusk. un-ta, 374 (1975), 194–210
[2] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galërkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | MR | Zbl
[3] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR
[4] Lions Zh., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl
[5] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR
[6] Fattorini H. O., The Cauchy problem, Addison-Wesley Publishing Company, Massachusets, 1983 | MR
[7] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, DAN SSSR, 116:5 (1957), 754–757 | MR
[8] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR | Zbl
[9] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galërkina dlya lineinykh nestatsionarnykh uravnenii”, Differents. uravneniya, 18:4 (1982), 639–645 | MR | Zbl
[10] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galërkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. uravneniya, 26:12 (1990), 2051–2059 | MR | Zbl
[11] Hausenblas E., “Numerical analysis of semilinear stochastic evolution equations in Banach spaces”, J. Comput. Appl. Math., 147:2 (2002), 485–516 | DOI | MR | Zbl
[12] Lyashko A. D., “Proektsionno-raznostnye skhemy dlya giperbolicheskikh uravnenii s vyrozhdayuschimsya ellipticheskim operatorom vysokogo poryadka”, Differents. uravneniya, 43:7 (2007), 972–977 | MR | Zbl
[13] Li H., Liu R., “The space-time finite element method for parabolic problems”, Appl. Mathematics and Mechanics, 22:6 (2001), 687–700 | DOI | MR | Zbl
[14] Turetaev I. D., “Tochnye otsenki gradienta pogreshnosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v proizvolnoi oblasti”, Zhurn. vychisl. matem. i matem. fiz., 26:11 (1986), 1748–1751 | MR
[15] Smagin V. V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolson dlya parabolicheskogo uravneniya”, Sib. matem. zhurn., 42:3 (2001), 670–682 | MR | Zbl
[16] Ashyralyev A., Sobolevskii P. E., “Well-posed solvability of the Cauchy problem for difference equation of parabolic type”, Nonlinear Anal., 24:2 (1995), 257–264 | DOI | MR | Zbl
[17] Ashyralyev A., Piskarev S., Weis L., “On well-posedness of difference schemes for abstract parabolic equations”, Numer. Funct. Anal. and Optimization, 23:7–8 (2002), 669–693 | DOI | MR | Zbl
[18] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[19] Zarubin A. G., Tiunchik M. F., “O metode Rote–Galërkina dlya odnogo klassa lineinykh nestatsionarnykh uravnenii”, Differents. uravneniya, 19:12 (1983), 2141–2148 | MR | Zbl
[20] Zarubin A. G., “K metodu Rote i Rote–Galërkina dlya kvazilineinogo differentsialno-operatornogo uravneniya”, Differents. uravneniya, 32:12 (1996), 1683–1690 | MR | Zbl
[21] Vinogradova P. V., “Otsenki pogreshnosti proektsionno-raznostnogo metoda dlya lineinogo differentsialno-operatornogo uravneniya”, Differents. uravneniya, 44:7 (2008), 942–951 | MR | Zbl
[22] Demidovich V. B., “Ob asimptoticheskom povedenii reshenii konechno-raznostnykh uravnenii”, Differents. uravneniya, 10:12 (1974), 2267–2278 | Zbl
[23] Zarubin A. G., Issledovanie metodom drobnykh stepenei proektsionnykh protsedur resheniya lineinykh i kvazilineinykh uravnenii, Diss. $\dots$ dokt. fiz.-matem. nauk, Khabarovsk, 1986
[24] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR
[25] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967