An extremal constrained routing problem with internal losses
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2010), pp. 64-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the following problem: one has to visit a finite number of sets and perform certain work on each of them. The work is accompanied by certain (internal) losses. The movements from some set to another one are constrained and accompanied by external (aggregated additively) losses. We propose a “through” variant of the dynamic programming method, formulate an equivalent reconstruction problem, and develop an optimal algorithm based on an efficient dynamic programming method technique.
Keywords:
dynamic programming, precedence conditions
Mots-clés : reconstruction problem.
Mots-clés : reconstruction problem.
@article{IVM_2010_6_a6,
author = {A. A. Chentsov and A. G. Chentsov and P. A. Chentsov},
title = {An extremal constrained routing problem with internal losses},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {64--81},
publisher = {mathdoc},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_6_a6/}
}
TY - JOUR AU - A. A. Chentsov AU - A. G. Chentsov AU - P. A. Chentsov TI - An extremal constrained routing problem with internal losses JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 64 EP - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_6_a6/ LA - ru ID - IVM_2010_6_a6 ER -
A. A. Chentsov; A. G. Chentsov; P. A. Chentsov. An extremal constrained routing problem with internal losses. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2010), pp. 64-81. http://geodesic.mathdoc.fr/item/IVM_2010_6_a6/