Sufficient conditions for existence and uniqueness of a~Chebyshev center of a~nonempty bounded set in a~geodesic space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2010), pp. 47-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for existence and uniqueness of a Chebyshev center of a nonempty bounded set in a geodesic space. We also establish conditions under which the Chebyshev center belongs to the closure of the convex shell of the mentioned set.
Keywords: Chebyshev center, geodesic space.
@article{IVM_2010_6_a4,
     author = {E. N. Sosov},
     title = {Sufficient conditions for existence and uniqueness of {a~Chebyshev} center of a~nonempty bounded set in a~geodesic space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--51},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_6_a4/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - Sufficient conditions for existence and uniqueness of a~Chebyshev center of a~nonempty bounded set in a~geodesic space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 47
EP  - 51
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_6_a4/
LA  - ru
ID  - IVM_2010_6_a4
ER  - 
%0 Journal Article
%A E. N. Sosov
%T Sufficient conditions for existence and uniqueness of a~Chebyshev center of a~nonempty bounded set in a~geodesic space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 47-51
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_6_a4/
%G ru
%F IVM_2010_6_a4
E. N. Sosov. Sufficient conditions for existence and uniqueness of a~Chebyshev center of a~nonempty bounded set in a~geodesic space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2010), pp. 47-51. http://geodesic.mathdoc.fr/item/IVM_2010_6_a4/

[1] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR

[2] Garkavi A. L., “O nailuchshei seti i nailuchshem sechenii mnozhestv v normirovannom prostranstve”, Izv. AN SSSR. Ser. matem., 26:1 (1962), 87–106 | MR | Zbl

[3] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[4] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR

[5] Papadopoulos A., Metric spaces, convexity and nonpositive curvature, European Math. Society, Zurich, 2005, 287 pp. | MR | Zbl

[6] Garkavi A. L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl

[7] Belobrov P. K., “K voprosu o chebyshevskom tsentre mnozhestva”, Izv. vuzov. Matematika, 1964, no. 1, 3–9 | MR | Zbl

[8] Sosov E. N., “On existence and uniqueness of Chebyshev center of a bounded set in a special geodesic space”, Lobachevskii J. Math., 7 (2000), 43–45 | MR | Zbl

[9] Sosov E. N., “O nailuchshikh $N$-setyakh ogranichennykh zamknutykh vypuklykh mnozhestv v spetsialnom metricheskom prostranstve”, Izv. vuzov. Matematika, 2003, no. 9, 42–45 | MR | Zbl

[10] Efremovich V. A., “Neekvimorfnost prostranstv Evklida i Lobachevskogo”, UMN, 4:2 (1949), 178–179

[11] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[12] Sosov E. N., “Ob approksimativnykh svoistvakh mnozhestv v spetsialnom metricheskom prostranstve”, Izv. vuzov. Matematika, 1999, no. 6, 81–84 | MR | Zbl