The Cauchy problem for evolution equations with the Bessel operator of infinite order.~I
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2010), pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish necessary and sufficient conditions under which the Bessel operator of infinite order is bounded in certain spaces. We study properties of the Bessel transformations of distributions from these spaces, those of convolutions, convolutors, and multiplicators.
Mots-clés : Bessel transformation, distributions
Keywords: Bessel operator of infinite order, convolutors, multiplicators.
@article{IVM_2010_6_a0,
     author = {V. V. Gorodestkii and O. V. Martynyuk},
     title = {The {Cauchy} problem for evolution equations with the {Bessel} operator of infinite {order.~I}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_6_a0/}
}
TY  - JOUR
AU  - V. V. Gorodestkii
AU  - O. V. Martynyuk
TI  - The Cauchy problem for evolution equations with the Bessel operator of infinite order.~I
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 3
EP  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_6_a0/
LA  - ru
ID  - IVM_2010_6_a0
ER  - 
%0 Journal Article
%A V. V. Gorodestkii
%A O. V. Martynyuk
%T The Cauchy problem for evolution equations with the Bessel operator of infinite order.~I
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 3-15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_6_a0/
%G ru
%F IVM_2010_6_a0
V. V. Gorodestkii; O. V. Martynyuk. The Cauchy problem for evolution equations with the Bessel operator of infinite order.~I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2010), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2010_6_a0/