Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_5_a9, author = {T. V. Zvereva}, title = {Intrinsic geometry of nets on a~multidimensional surface in a~conformal space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {83--87}, publisher = {mathdoc}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a9/} }
T. V. Zvereva. Intrinsic geometry of nets on a~multidimensional surface in a~conformal space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 83-87. http://geodesic.mathdoc.fr/item/IVM_2010_5_a9/
[1] Akivis M. A., “K konformno-differentsialnoi geometrii mnogomernykh poverkhnostei”, Matem. sb., 53(95):1 (1961), 53–72 | MR | Zbl
[2] Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations, Pure and Appl. Math. (New York), A Wiley-Interscience Publ., John Wiley Sons Inc., New York, 1996, xiv+383 pp. | MR | Zbl
[3] Vagner V. V., “Teoriya polya lokalnykh giperpolos”, Tr. semin. po vektorn. i tenzorn. analizu, 8, Izd-vo MGU, M., 1950, 197–272 | MR
[4] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Itogi nauki i tekhniki. Problemy geometrii, 9, VINITI, M., 1976, 246 pp. | MR | Zbl
[5] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl
[6] Bazylev V. T., “O setyakh na mnogomernykh poverkhnostyakh proektivnogo prostranstva”, Izv. vuzov. Matematika, 1966, no. 2, 9–19 | MR | Zbl