Intrinsic geometry of nets on a~multidimensional surface in a~conformal space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 83-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Until now the intrinsic geometry of nets on a surface $V_m$ in a conformal space $C_n$ was not investigated in the mathematical literature. The goal of this work is to start analyzing this problem in differential geometry. We perform the study on the $m$-dimensional surface $V_m$ in $C_n$.
Mots-clés : conformal space, net.
Keywords: hyperband, surface framing, affine connection
@article{IVM_2010_5_a9,
     author = {T. V. Zvereva},
     title = {Intrinsic geometry of nets on a~multidimensional surface in a~conformal space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--87},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a9/}
}
TY  - JOUR
AU  - T. V. Zvereva
TI  - Intrinsic geometry of nets on a~multidimensional surface in a~conformal space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 83
EP  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_5_a9/
LA  - ru
ID  - IVM_2010_5_a9
ER  - 
%0 Journal Article
%A T. V. Zvereva
%T Intrinsic geometry of nets on a~multidimensional surface in a~conformal space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 83-87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_5_a9/
%G ru
%F IVM_2010_5_a9
T. V. Zvereva. Intrinsic geometry of nets on a~multidimensional surface in a~conformal space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 83-87. http://geodesic.mathdoc.fr/item/IVM_2010_5_a9/

[1] Akivis M. A., “K konformno-differentsialnoi geometrii mnogomernykh poverkhnostei”, Matem. sb., 53(95):1 (1961), 53–72 | MR | Zbl

[2] Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations, Pure and Appl. Math. (New York), A Wiley-Interscience Publ., John Wiley Sons Inc., New York, 1996, xiv+383 pp. | MR | Zbl

[3] Vagner V. V., “Teoriya polya lokalnykh giperpolos”, Tr. semin. po vektorn. i tenzorn. analizu, 8, Izd-vo MGU, M., 1950, 197–272 | MR

[4] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Itogi nauki i tekhniki. Problemy geometrii, 9, VINITI, M., 1976, 246 pp. | MR | Zbl

[5] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[6] Bazylev V. T., “O setyakh na mnogomernykh poverkhnostyakh proektivnogo prostranstva”, Izv. vuzov. Matematika, 1966, no. 2, 9–19 | MR | Zbl