Sufficient conditions for realizability of Boolean functions by asymptotically optimal circuits with the unreliability~$2\varepsilon$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider realizations of Boolean functions by circuits composed of unreliable functional elements in some complete finite basis $B$. We assume that all elements independently of each other with the probability $\varepsilon$ ($\varepsilon\in(0;1/2)$) are subjected to inverse failures at the output. We construct Boolean functions $\varphi(x_1,x_2,x_3)$ such that the presence of at least one of them in the considered basis $B$ guarantees the realizability of all three Boolean functions by circuits whose reliability does not exceed $2\varepsilon+144\varepsilon^2$ with $\varepsilon\le1/960$. In addition, if $B\subset B_3\setminus G$ ($B_3$ is the set of all Boolean functions of three variables $x_1$, $x_2$, and $x_3$, and $G$ is the set of Boolean functions such that each one of them is congruent either to $x_1^{\sigma_1}x_2^{\sigma_2}\vee x_1^{\sigma_1}x_3^{\sigma_3}\vee x_2^{\sigma_2}x_3^{\sigma_3}$, or to $x_1^{\sigma_1}x_2^{\sigma_2}\oplus x_3^{\sigma_3}$, or to $x_1^{\sigma_1}x_2^{\overline\sigma_2}\vee x_2^{\sigma_2}x_3^{\sigma_3}$ ($\sigma_1,\sigma_2,\sigma_3\in\{0,1\}$)), then the presence of at least one of functions $\varphi(x_1,x_2,x_3)$ guarantees the realizability of almost all Boolean functions by asymptotically optimal (with respect to the reliability) circuits, whose unreliability equals $2\varepsilon$ with $\varepsilon\to0$.
Keywords: unreliable functional elements, circuits asymptotically optimal with respect to reliability, inverse failures on outputs of elements, synthesis of circuits composed of unreliable elements.
@article{IVM_2010_5_a8,
     author = {M. A. Alekhina and A. V. Vasin},
     title = {Sufficient conditions for realizability of {Boolean} functions by asymptotically optimal circuits with the unreliability~$2\varepsilon$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--82},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a8/}
}
TY  - JOUR
AU  - M. A. Alekhina
AU  - A. V. Vasin
TI  - Sufficient conditions for realizability of Boolean functions by asymptotically optimal circuits with the unreliability~$2\varepsilon$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 79
EP  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_5_a8/
LA  - ru
ID  - IVM_2010_5_a8
ER  - 
%0 Journal Article
%A M. A. Alekhina
%A A. V. Vasin
%T Sufficient conditions for realizability of Boolean functions by asymptotically optimal circuits with the unreliability~$2\varepsilon$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 79-82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_5_a8/
%G ru
%F IVM_2010_5_a8
M. A. Alekhina; A. V. Vasin. Sufficient conditions for realizability of Boolean functions by asymptotically optimal circuits with the unreliability~$2\varepsilon$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 79-82. http://geodesic.mathdoc.fr/item/IVM_2010_5_a8/

[1] Vasin A. V., “O funktsiyakh spetsialnogo vida”, Tr. VIII mezhdunarodn. konf. “Diskretnye modeli v teorii upravlyayuschikh sistem”, MAKS Press, M., 2009, 43–46

[2] Alekhina M. A., Vasin A. V., “O nadezhnosti skhem v bazisakh, soderzhaschikh funktsii ne bolee chem trekh peremennykh”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauki, 151, no. 2, 2009, 25–35

[3] Aksenov S. I., “O nadezhnosti skhem nad proizvolnoi polnoi sistemoi funktsii pri inversnykh neispravnostyakh na vykhodakh elementov”, Izv. vuzov. Povolzhskii region. Estestven. nauki, 2005, no. 6, 42–55

[4] Alekhina M. A., Sintez asimptoticheski optimalnykh po nadezhnosti skhem iz nenadezhnykh elementov, IITs PGU, Penza, 2006, 157 pp.

[5] Alekhina M. A., Pichugina P. G., “O nadezhnosti dvoistvennykh skhem v polnom konechnom bazise”, Materialy XIII Mezhdunarodn. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem”, Izd-vo mekh.-mat. f-ta MGU, M., 2009, 10–13