Intuitionistic fuzzy semisimple ideals in ordered semigroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 65-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give characterizations of different classes of ordered semigroups by using intuitionistic fuzzy ideals. We prove that an ordered semigroup is regular if and only if every intuitionistic fuzzy left (respectively, right) ideal of $S$ is idempotent. We also prove that an ordered semigroup $S$ is intra-regular if and only if every intuitionistic fuzzy two-sided ideal of $S$ is idempotent and give further characterizations of regular and intra-regular ordered semigroups in terms of intuitionistic fuzzy left (respectively, right) ideals. In the last part of this paper we prove that an ordered semigroup $S$ is left weakly regular if and only if every intuitionistic fuzzy left ideal of $S$ is idempotent.
Keywords: intuitionistic fuzzy sets, intuitionistic fuzzy ideals, regular (respectively, intra-regular and left weakly regular) ordered semigroups.
@article{IVM_2010_5_a7,
     author = {A. Khan and M. Shabir},
     title = {Intuitionistic fuzzy semisimple ideals in ordered semigroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--78},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a7/}
}
TY  - JOUR
AU  - A. Khan
AU  - M. Shabir
TI  - Intuitionistic fuzzy semisimple ideals in ordered semigroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 65
EP  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_5_a7/
LA  - ru
ID  - IVM_2010_5_a7
ER  - 
%0 Journal Article
%A A. Khan
%A M. Shabir
%T Intuitionistic fuzzy semisimple ideals in ordered semigroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 65-78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_5_a7/
%G ru
%F IVM_2010_5_a7
A. Khan; M. Shabir. Intuitionistic fuzzy semisimple ideals in ordered semigroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 65-78. http://geodesic.mathdoc.fr/item/IVM_2010_5_a7/

[1] Zadeh L. A., “Fuzzy sets”, Inform. Control., 8:3 (1965), 338–353 | DOI | MR | Zbl

[2] Atanassov K. T., “Intuitionistic fuzzy sets”, Fuzzy Sets Syst., 20:1 (1986), 87–96 | DOI | MR | Zbl

[3] Atanassov K. T., “New operations defined over the intuitionistic fuzzy sets”, Fuzzy Sets Syst., 61:2 (1994), 137–142 | DOI | MR | Zbl

[4] Atanassov K. T., Intuitionistic fuzzy sets, Theory and applications. Studies in Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg, 1999, 323 pp. | MR | Zbl

[5] Gau W. L., Buehrer D. J., “Vague sets”, IEEE Trans. Syst. Man Cybern., 23:2 (1993), 610–614 | DOI | Zbl

[6] Burillo P., Bustince H., “Vague sets are intuitionistic fuzzy sets”, Fuzzy Sets Syst., 79:3 (1996), 403–405 | DOI | MR | Zbl

[7] Davvaz B., Dudek W. A., Jun Y. B., “Intuitionistic fuzzy $H_v$-submodules”, Inform. Sci., 176:3 (2006), 285–300 | DOI | MR | Zbl

[8] Kim K. H., Dudek W. A., Jun Y. B., “On intuitionistic fuzzy subquasigroups of quasigroups”, Quasigroups Related Syst., 7:1 (2000), 15–28 | MR | Zbl

[9] Kim K. H., Jun Y. B., “Intuitionistic fuzzy interior ideals of semigroups”, Int. J. Math. Sci., 97:5 (2001), 261–267 | DOI | MR

[10] Kim K. H., Jun Y. B., “Intuitionistic fuzzy ideals of semigroups”, Indian J. Pure Appl. Math., 33:4 (2002), 443–449 | MR | Zbl

[11] Jun Y. B., “Intuitionistic fuzzy bi-ideals of ordered semigroups”, Kyungpook Math. J., 45:4 (2005), 527–537 | MR | Zbl

[12] Shabir M., Khan A., “Intuitionistic fuzzy interior ideals of ordered semigroups”, J. Appl. Math. and Informatics (to appear)

[13] Shabir M., Khan A., “Intuitionistic fuzzy filters of ordered semigroups”, J. Appl. Math. Inform., 26:5–6 (2008), 213–220

[14] Davvaz B., “Fuzzy $H_v$-submodules”, Fuzzy Sets Syst., 117:3 (2001), 477–484 | DOI | MR | Zbl

[15] Kehayopulu N., “On regular duo ordered semigroups”, Math. Japonica, 37:6 (1990), 1051–1056 | MR

[16] Kehayopulu N., “On regular ordered semigroups”, Math. Japonica, 45:3 (1997), 549–553 | MR | Zbl

[17] Kehayopulu N., Tsingelis M., “Fuzzy sets in ordered groupoids”, Semigroup Forum, 65:1 (2002), 128–132 | DOI | MR | Zbl

[18] Ahsan J., Kui Yuan Li, Shabir M., “Semigroups characterized by their fuzzy bi-ideals”, J. Fuzzy Math., 10:2 (2002), 441–449 | MR | Zbl

[19] Kuroki N., “Fuzzy generalized bi-ideals in semigroups”, Inform. Sci., 66:3 (1992), 235–243 | DOI | MR | Zbl

[20] Kehayopulu N., Tsingelis M., “Regular ordered semigroups in terms of fuzzy subsets”, Inform. Sci., 176:24 (2006), 3675–3693 | DOI | MR | Zbl

[21] Shabir M., Khan A., “Characterizations of ordered semigroups by the properties of their fuzzy ideals”, Comput. Math. Appl. (to appear)

[22] Shabir M., Khan A., “Characterizations of ordered semigroups by the properties of their fuzzy generalized bi-ideals”, New Math. Natural Comput., 4:2 (2008), 237–250 | DOI | MR | Zbl

[23] Kehayopulu N., Tsingelis M., “Fuzzy bi-ideals in ordered semigroups”, Inform. Sci., 105:1–3 (2005), 13–28 | DOI | MR