Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_5_a5, author = {Yu. V. Tret'yachenko}, title = {A generalization of the {Helly} theorem for functions with values in a~uniform space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {41--54}, publisher = {mathdoc}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a5/} }
TY - JOUR AU - Yu. V. Tret'yachenko TI - A generalization of the Helly theorem for functions with values in a~uniform space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 41 EP - 54 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_5_a5/ LA - ru ID - IVM_2010_5_a5 ER -
Yu. V. Tret'yachenko. A generalization of the Helly theorem for functions with values in a~uniform space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 41-54. http://geodesic.mathdoc.fr/item/IVM_2010_5_a5/
[1] Helly E., “Über lineare Functionaloperationen”, Wien. Ber., 121 (1912), 265–297 | Zbl
[2] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR
[3] Chistyakov V. V., “Selections of bounded variation”, J. Appl. Anal., 10:1 (2004), 1–82 | MR
[4] Musielak J., Orlicz W., “On generalized variations. I”, Stud. Math., 18:1 (1959), 11–41 | MR | Zbl
[5] Waterman D., “On $\Lambda$-bounded variation”, Stud. Math., 57:1 (1976), 33–45 | MR | Zbl
[6] Gniłka S., “On the generalized Helly's theorem”, Funct. Approx. Comment. Math., 4 (1976), 109–112 | MR | Zbl
[7] Schramm M., “Functions of $\Phi$-bounded variation and Riemann–Stieltjes integration”, Trans. Amer. Math. Soc., 287:1 (1985), 49–63 | DOI | MR | Zbl
[8] Belov S. A., Chistyakov V. V., “A selection principle for mappings of bounded variation”, J. Math. Anal. Appl., 249:2 (2000), 351–366 | DOI | MR | Zbl
[9] Chistyakov V. V., “On mappings of bounded variation”, J. Dynam. Control Syst., 3:2 (1997), 261–289 | DOI | MR | Zbl
[10] Chistyakov V. V., “K teorii mnogoznachnykh otobrazhenii ogranichennoi variatsii odnoi veschestvennoi peremennoi”, Matem. sb., 189:5 (1998), 153–176 | MR | Zbl
[11] Chistyakov V. V., “Mappings of bounded variation with values in a metric space: generalizations”, J. Math. Sci., 100:6 (2000), 2700–2715 | DOI | MR
[12] Chistyakov V. V., “Generalized variation of mappings with applications to composition operators and multifunctions”, Positivity, 5:4 (2001), 323–358 | DOI | MR | Zbl
[13] Chistyakov V. V., “Metric space-valued mappings of bounded variation”, J. Math. Sci., 111:2 (2002), 3387–3429 | DOI | MR | Zbl
[14] Chistyakov V. V., “Mappings of generalized variation and composition operators”, J. Math. Sci., 110:2 (2002), 2455–2466 | DOI | MR | Zbl
[15] Chistyakov V. V., “O mnogoznachnykh otobrazheniyakh ogranichennoi obobschennoi variatsii”, Matem. zametki, 71:4 (2002), 611–632 | MR | Zbl
[16] Barbu V., Precupanu Th., Convexity and optimization in Banach spaces, Reidel, Dordrecht, 1986, 301 pp. | MR | Zbl
[17] Chistyakov V. V., “Printsip vybora dlya funktsii so znacheniyami v ravnomernom prostranstve”, Dokl. RAN, 409:5 (2006), 591–593 | MR | Zbl
[18] Chistyakov V. V., “Potochechnyi printsip vybora dlya funktsii odnoi peremennoi so znacheniyami v ravnomernom prostranstve”, Matem. tr., 9:1 (2006), 176–204 | MR
[19] Tretyachenko Yu. V., “Uslovie suschestvovaniya potochechno skhodyascheisya podposledovatelnosti”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tez. dokl., Tr. Matem. tsentra im. N. I. Lobachevskogo, 35, Kazan, 2007, 246–247
[20] Tretyachenko Yu. V., “Ob odnom printsipe vybora dlya potochechno ogranichennykh posledovatelnostei funktsii”, Lobachevskie chteniya – 2007, Tez. dokl., Tr. Matem. tsentra im. N. I. Lobachevskogo, 36, Kazan, 2007, 219–221
[21] Kelli Dzh., Obschaya topologiya, Nauka, M., 1981, 432 pp. | MR
[22] Dudley R. M., Norvaiša R., Differentiability of six operators on nonsmooth functions and $p$-variation, Springer-Verlag, Berlin, 1999, 277 pp. | MR | Zbl
[23] Jeffery R. L., “Generalized integrals with respect to functions of bounded variation”, Canad. J. Math., 10:4 (1958), 617–628 | MR
[24] Chanturiya Z. A., “Modul izmeneniya funktsii i ego primeneniya v teorii ryadov Fure”, DAN SSSR, 214:1 (1974), 63–66 | Zbl
[25] Chistyakov V. V., “A selection principle for functions of a real variable”, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 53:1 (2005), 25–43 | MR | Zbl
[26] Chistyakov V. V., “The optimal form of selection principles for functions of a real variable”, J. Math. Anal. Appl., 310:2 (2005), 609–625 | MR | Zbl
[27] Tolstonogov A. A., “O nekotorykh svoistvakh prostranstva pravilnykh funktsii”, Matem. zametki, 35:6 (1984), 803–812 | MR | Zbl
[28] Tretyachenko Yu. V., Chistyakov V. V., “Printsip vybora dlya potochechno ogranichennykh posledovatelnostei funktsii”, Matem. zametki, 84:3 (2008), 428–439 | MR | Zbl
[29] Chistyakov V. V., Maniscalco C., Tretyachenko Y. V., “Variants of a selection principle for sequences of regulated and non-regulated functions”, Topics in Classical Analysis and Applications in Honor of Professor Daniel Waterman, World Scientific, Singapore, 2008, 45–72 | Zbl