Realizability of the $H_k$-distance functions by homology classes of path spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 18-24
Cet article a éte moissonné depuis la source Math-Net.Ru
In the previous papers we constructed and studied mappings $d_k\colon M\times M\to\mathbb R$; we called them the $H_k$-distance functions. The main result of this paper is a theorem about the realizability of generalized distances $d_k(v,w)$, $v,w\in M$, considered as critical values of the length functional $\mathcal L\colon\Omega(M,v,w)\to\mathbb R$ generated by some nontrivial homology classes of the space $\Omega(M,v,w)$ of paths between points $v$ and $w$.
Keywords:
Riemannian manifold, path space, distance functions, multivalued functional, extremal.
@article{IVM_2010_5_a2,
author = {Yu. V. Ershov and E. I. Yakovlev},
title = {Realizability of the $H_k$-distance functions by homology classes of path spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {18--24},
year = {2010},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a2/}
}
TY - JOUR AU - Yu. V. Ershov AU - E. I. Yakovlev TI - Realizability of the $H_k$-distance functions by homology classes of path spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 18 EP - 24 IS - 5 UR - http://geodesic.mathdoc.fr/item/IVM_2010_5_a2/ LA - ru ID - IVM_2010_5_a2 ER -
Yu. V. Ershov; E. I. Yakovlev. Realizability of the $H_k$-distance functions by homology classes of path spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 18-24. http://geodesic.mathdoc.fr/item/IVM_2010_5_a2/
[1] Lyusternik L. A., “Topologiya i variatsionnoe ischislenie”, UMN, 1:1 (1946), 30–56 | MR | Zbl
[2] Ershov Yu. V., “Obobscheniya funktsii rasstoyaniya rimanova mnogoobraziya”, Vestn. NNGU. Ser. Matem., 2006, no. 1, 29–37 | MR
[3] Ershov Yu. V., Yakovlev E. I., “Obobschennye funktsii rasstoyaniya rimanovykh mnogoobrazii i dvizheniya giroskopicheskikh sistem”, Sib. matem. zhurn., 49:1 (2008), 87–100 | MR | Zbl
[4] Yakovlev E. I., “Geodezicheskoe modelirovanie i usloviya razreshimosti dvukhkontsevoi zadachi dlya mnogoznachnykh funktsionalov”, Funktsion. analiz i ego prilozh., 30:1 (1996), 89–92 | MR | Zbl
[5] Postnikov M. M., Vvedenie v teoriyu Morsa, Nauka, M., 1971, 568 pp. | MR | Zbl