The study of boundary value problems for a singular $B$-elliptic equation by the method of potentials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 88-90
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we apply the method of potentials for studying the Dirichlet and Neumann boundary value problems for a $B$-elliptic equation in the form $$ \Delta_{x''}u+B_{x_{p-1}}u+x_p^{-\alpha}\frac\partial{\partial x_p}\left({x_p^\alpha\frac{\partial u}{\partial x_p}}\right)=0, $$ where $\Delta_{x''}=\sum^{p-2}_{j=1}\frac{\partial^2}{\partial x_j^2}$, $B_{x_{p-1}}=\frac{\partial^2}{\partial x_{p-1}^2}+\frac k{x_{p-1}}\frac\partial{\partial x_{p-1}}$ is the Bessel operator, $0<\alpha<1$ and $k>0$ are constants, $p\ge3$. We prove the unique solvability of these problems.
Keywords:
Bessel operator, Dirichlet problem, Neumann problem, method of potentials.
Mots-clés : $B$-elliptic equation
Mots-clés : $B$-elliptic equation
@article{IVM_2010_5_a10,
author = {E. V. Chebatoreva},
title = {The study of boundary value problems for a~singular $B$-elliptic equation by the method of potentials},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {88--90},
year = {2010},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a10/}
}
TY - JOUR AU - E. V. Chebatoreva TI - The study of boundary value problems for a singular $B$-elliptic equation by the method of potentials JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 88 EP - 90 IS - 5 UR - http://geodesic.mathdoc.fr/item/IVM_2010_5_a10/ LA - ru ID - IVM_2010_5_a10 ER -
E. V. Chebatoreva. The study of boundary value problems for a singular $B$-elliptic equation by the method of potentials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 88-90. http://geodesic.mathdoc.fr/item/IVM_2010_5_a10/
[1] Khismatullin A. Sh., “Reshenie kraevykh zadach dlya odnogo vyrozhdayuschegosya $B$-ellipticheskogo uravneniya vtorogo roda metodom potentsialov”, Izv. vuzov. Matematika, 2007, no. 1, 63–75 | MR | Zbl
[2] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977, 432 pp. | MR