The study of boundary value problems for a~singular $B$-elliptic equation by the method of potentials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 88-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we apply the method of potentials for studying the Dirichlet and Neumann boundary value problems for a $B$-elliptic equation in the form $$ \Delta_{x''}u+B_{x_{p-1}}u+x_p^{-\alpha}\frac\partial{\partial x_p}\left({x_p^\alpha\frac{\partial u}{\partial x_p}}\right)=0, $$ where $\Delta_{x''}=\sum^{p-2}_{j=1}\frac{\partial^2}{\partial x_j^2}$, $B_{x_{p-1}}=\frac{\partial^2}{\partial x_{p-1}^2}+\frac k{x_{p-1}}\frac\partial{\partial x_{p-1}}$ is the Bessel operator, $0\alpha1$ and $k>0$ are constants, $p\ge3$. We prove the unique solvability of these problems.
Keywords: Bessel operator, Dirichlet problem, Neumann problem, method of potentials.
Mots-clés : $B$-elliptic equation
@article{IVM_2010_5_a10,
     author = {E. V. Chebatoreva},
     title = {The study of boundary value problems for a~singular $B$-elliptic equation by the method of potentials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {88--90},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a10/}
}
TY  - JOUR
AU  - E. V. Chebatoreva
TI  - The study of boundary value problems for a~singular $B$-elliptic equation by the method of potentials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 88
EP  - 90
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_5_a10/
LA  - ru
ID  - IVM_2010_5_a10
ER  - 
%0 Journal Article
%A E. V. Chebatoreva
%T The study of boundary value problems for a~singular $B$-elliptic equation by the method of potentials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 88-90
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_5_a10/
%G ru
%F IVM_2010_5_a10
E. V. Chebatoreva. The study of boundary value problems for a~singular $B$-elliptic equation by the method of potentials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 88-90. http://geodesic.mathdoc.fr/item/IVM_2010_5_a10/

[1] Khismatullin A. Sh., “Reshenie kraevykh zadach dlya odnogo vyrozhdayuschegosya $B$-ellipticheskogo uravneniya vtorogo roda metodom potentsialov”, Izv. vuzov. Matematika, 2007, no. 1, 63–75 | MR | Zbl

[2] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977, 432 pp. | MR