Asymptotic analogs of the Floquet--Lyapunov theorem for some classes of periodic systems of ordinary differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove asymptotic analogs of the Floquet–Lyapunov theorem and some reducibility theorems for various classes of linear and quasilinear systems of ordinary differential equations with periodic matrices with large and small amplitudes. We study such problems with the help of new versions of the splitting method in the theory of regular and singular perturbations, which complements the known results. We also adduce several examples.
Keywords: system of ordinary differential equations, Cauchy problem, singularly perturbed system, splitting method, small parameter.
@article{IVM_2010_4_a4,
     author = {E. Yu. Romanova},
     title = {Asymptotic analogs of the {Floquet--Lyapunov} theorem for some classes of periodic systems of ordinary differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--54},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_4_a4/}
}
TY  - JOUR
AU  - E. Yu. Romanova
TI  - Asymptotic analogs of the Floquet--Lyapunov theorem for some classes of periodic systems of ordinary differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 46
EP  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_4_a4/
LA  - ru
ID  - IVM_2010_4_a4
ER  - 
%0 Journal Article
%A E. Yu. Romanova
%T Asymptotic analogs of the Floquet--Lyapunov theorem for some classes of periodic systems of ordinary differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 46-54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_4_a4/
%G ru
%F IVM_2010_4_a4
E. Yu. Romanova. Asymptotic analogs of the Floquet--Lyapunov theorem for some classes of periodic systems of ordinary differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 46-54. http://geodesic.mathdoc.fr/item/IVM_2010_4_a4/

[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M.–L., 1950, 472 pp.

[2] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, M., Izd-vo MGU, 480 pp. | MR

[3] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 718 pp. | MR

[4] Rozo M., Nelineinye kolebaniya i teoriya ustoichivosti, Nauka, M., 1971, 288 pp.

[5] Morozov V. M., Kalenova V. I., Otsenivanie i upravlenie v nestatsionarnykh lineinykh sistemakh, Izd-vo MGU, M., 1988, 144 pp.

[6] Magnitskii N. A., Asimptoticheskie metody analiza nestatsionarnykh upravlyaemykh sistem, Nauka, M., 1992, 160 pp. | MR

[7] Konyaev Yu. A., “Metody rasschepleniya v teorii regulyarnykh i singulyarnykh vozmuschenii”, Izv. vuzov. Matematika, 2000, no. 6, 10–15 | MR | Zbl

[8] Konyaev Yu. A., Fedorov Yu. S., “Asimptoticheskii analiz nekotorykh klassov singulyarno vozmuschennykh zadach na poluosi”, Matem. zametki, 62:1 (1997), 111–117 | MR | Zbl

[9] Konyaev Yu. A., “Ob odnom metode issledovaniya nekotorykh zadach teorii vozmuschenii”, Matem. sb., 184:12 (1993), 133–144 | MR | Zbl

[10] Konyaev Yu. A., Martynenko Yu. G., “Issledovanie ustoichivosti neavtonomnykh sistem differentsialnykh uravnenii kvazipolinomialnogo tipa”, Differents. uravneniya, 34:10 (1998), 1427–1429 | MR | Zbl

[11] Konyaev Yu. A., “Dostatochnye usloviya ustoichivosti reshenii nekotorykh klassov ODU v kriticheskikh sluchayakh”, Differents. uravneniya, 26:4 (1990), 706–712 | MR

[12] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[13] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[14] Linkov R. V., “Medlennye dvizheniya provodyaschego volchka pri rezonansnom vzaimodeistvii s peremennym magnitnym polem”, Zhurn. tekhn. fiz., 50:6 (1980), 1152–1159

[15] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR | Zbl