The Nitsche mortar method for matching grids in a~mixed finite element method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 19-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that nonmatching grids are often used in finite element methods. Usually, grids are being matched along lines or surfaces that divide a domain into subdomains. Such lines or surfaces are called interfaces. The interface matching means the satisfaction of some continuity conditions when crossing the interface. The direct matching procedures fall into three groups: methods that use Lagrangian multipliers, mortar-methods based on the Nitsche technique, and penalty methods.
Keywords: mixed finite element methods, Hermann–Johnson scheme, mortar-method for grid matching, loss of convergence rate.
Mots-clés : convergence rate
@article{IVM_2010_4_a2,
     author = {L. V. Maslovskaya and O. M. Maslovskaya},
     title = {The {Nitsche} mortar method for matching grids in a~mixed finite element method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--35},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_4_a2/}
}
TY  - JOUR
AU  - L. V. Maslovskaya
AU  - O. M. Maslovskaya
TI  - The Nitsche mortar method for matching grids in a~mixed finite element method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 19
EP  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_4_a2/
LA  - ru
ID  - IVM_2010_4_a2
ER  - 
%0 Journal Article
%A L. V. Maslovskaya
%A O. M. Maslovskaya
%T The Nitsche mortar method for matching grids in a~mixed finite element method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 19-35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_4_a2/
%G ru
%F IVM_2010_4_a2
L. V. Maslovskaya; O. M. Maslovskaya. The Nitsche mortar method for matching grids in a~mixed finite element method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 19-35. http://geodesic.mathdoc.fr/item/IVM_2010_4_a2/

[1] Babuška I., “Error-bounds for finite element method”, Numer. Math., 16 (1971), 322–333 | DOI | MR | Zbl

[2] Nitsche J. A., “Convergence of nonconforming methods”, Math. Aspects Finite Elem. Partial Differ. Equat., Proc Symp., Madison, 1974, 15–53 | MR | Zbl

[3] Becker R., Hansbo P., Stenberg R., “A finite element method for domain decomposition with non-matching grids”, Math. Model. Numer. Anal., 37:2 (2003), 209–225 | DOI | MR | Zbl

[4] Le Tallec P., Sassi T., “Domain decomposition with nonmatching grids: augmented Lagrangian approach”, Math. Comput., 64:212 (1995), 1367–1396 | DOI | MR | Zbl

[5] Babuška I., “The finite element method with penalty”, Math. Comput., 27 (1973), 221–228 | DOI | MR | Zbl

[6] Aubin J.-P., “Approximation des problèmes aux limites non homogènes et régularité de la convergence”, Calcolo, 6 (1969), 117–140 | DOI | Zbl

[7] Maslovskaya L. V., Maslovskaya O. M., “Metod shtrafa dlya stykovki setok v metode konechnykh elementov”, Izv. vuzov. Matematika, 2006, no. 10, 33–43 | MR

[8] Maslovskaya L. V., Maslovskaya O. M., “Nekotorye metody stykovki setok v metode konechnykh elementov”, Materialy Sedmogo Vserossiiskogo seminara: Setochnye metody dlya kraevykh zadach i prilozheniya (Kazan, 21–24 sentyabrya 2007), 186–189

[9] Maslovskaya L. V., Maslovskaya O. M., “Metod shtrafa stykovki setok v smeshannom metode konechnykh elementov”, Izv. vuzov. Matematika, 2009, no. 3, 37–54

[10] Brezzi F., Raviart P. A., “Mixed finite element methods for 4th order elliptic equations”, Topics in Numerical Analysis, III, Academic Press, London–New York–San Francisco, 1976, 315–338 | MR

[11] Falk R. S., Osborn J. E., “Error estimates for mixed methods”, RAIRO Anal. Numér., 14:3 (1980), 249–277 | MR | Zbl

[12] Maslovskaya L. V., “Povedenie resheniya bigarmonicheskogo uravneniya v oblastyakh s uglovymi tochkami”, Differents. uravneniya, 19:12 (1983), 2172–2175 | MR | Zbl

[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[14] Babuška I., Osborn J., Pitkaeranta J., “Analysis of mixed methods using mesh dependent norms”, Math. Comput., 35 (1980), 1039–1062 | DOI | MR | Zbl

[15] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, RAIRO, 8:R-2 (1974), 129–151 | MR | Zbl