The Riemann boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 10-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the solvability conditions and explicitly solve the Riemann boundary value problem on an $n$-sheeted surface in the case when projections of branch points on the complex plane have a single limit point at infinity.
Keywords: boundary value problem, Riemann surface.
@article{IVM_2010_4_a1,
     author = {I. A. Bikchantaev},
     title = {The {Riemann} boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--18},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/}
}
TY  - JOUR
AU  - I. A. Bikchantaev
TI  - The Riemann boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 10
EP  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/
LA  - ru
ID  - IVM_2010_4_a1
ER  - 
%0 Journal Article
%A I. A. Bikchantaev
%T The Riemann boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 10-18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/
%G ru
%F IVM_2010_4_a1
I. A. Bikchantaev. The Riemann boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 10-18. http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/

[1] Chibrikova L. I., “Granichnye zadachi teorii analiticheskikh funktsii na rimanovykh poverkhnostyakh”, Itogi nauki i tekhniki. Matem. analiz, 18, VINITI, 1980, 3–66 | MR | Zbl

[2] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl

[3] Bikchantaev I. A., “Zadacha Rimana na konechnolistnoi rimanovoi poverkhnosti beskonechnogo roda”, Matem. zametki, 67:1 (2000), 25–35 | MR | Zbl

[4] Soldatov A. P., Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vysshaya shkola, M., 1991, 208 pp. | MR | Zbl

[5] Sario L., Nakai M., Classification theory of open Riemann surfaces, Springer-Verlag, Berlin–Heidelberg–New York, 1970, 446 pp. | MR | Zbl