Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_4_a1, author = {I. A. Bikchantaev}, title = {The {Riemann} boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--18}, publisher = {mathdoc}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/} }
TY - JOUR AU - I. A. Bikchantaev TI - The Riemann boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 10 EP - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/ LA - ru ID - IVM_2010_4_a1 ER -
%0 Journal Article %A I. A. Bikchantaev %T The Riemann boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 10-18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/ %G ru %F IVM_2010_4_a1
I. A. Bikchantaev. The Riemann boundary-value problem on an $n$-sheeted surface free of limit points of projections of branch points onto~$\mathbb C$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 10-18. http://geodesic.mathdoc.fr/item/IVM_2010_4_a1/
[1] Chibrikova L. I., “Granichnye zadachi teorii analiticheskikh funktsii na rimanovykh poverkhnostyakh”, Itogi nauki i tekhniki. Matem. analiz, 18, VINITI, 1980, 3–66 | MR | Zbl
[2] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl
[3] Bikchantaev I. A., “Zadacha Rimana na konechnolistnoi rimanovoi poverkhnosti beskonechnogo roda”, Matem. zametki, 67:1 (2000), 25–35 | MR | Zbl
[4] Soldatov A. P., Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vysshaya shkola, M., 1991, 208 pp. | MR | Zbl
[5] Sario L., Nakai M., Classification theory of open Riemann surfaces, Springer-Verlag, Berlin–Heidelberg–New York, 1970, 446 pp. | MR | Zbl