Isolated 2-computably enumerable $Q$-degrees
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We demonstrate that for every pair of computably enumerable degrees $\mathbf a$ there exists a properly 2-computably enumerable degree $\mathbf d$, $\mathbf a$, such that $\mathbf a$ isolates $\mathbf d$ from below and $\mathbf b$ isolates $\mathbf d$ from above. As a corollary we prove that there exists a 2-computably enumerable degree which is $Q$-incomparable with any nontrivial (i.e., different from $\boldsymbol0$ and $\boldsymbol0'$) computably enumerable degree, and that every nontrivial computably enumerable degree isolates some 2-computably enumerable degree from below and some 2-computably enumerable degree from above.
Keywords: computably enumerable sets, quasi-reducibility, 2-computably enumerable sets, isolated degrees.
@article{IVM_2010_4_a0,
     author = {I. I. Batyrshin},
     title = {Isolated 2-computably enumerable $Q$-degrees},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_4_a0/}
}
TY  - JOUR
AU  - I. I. Batyrshin
TI  - Isolated 2-computably enumerable $Q$-degrees
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 3
EP  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_4_a0/
LA  - ru
ID  - IVM_2010_4_a0
ER  - 
%0 Journal Article
%A I. I. Batyrshin
%T Isolated 2-computably enumerable $Q$-degrees
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 3-9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_4_a0/
%G ru
%F IVM_2010_4_a0
I. I. Batyrshin. Isolated 2-computably enumerable $Q$-degrees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2010_4_a0/

[1] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972, 624 pp. | MR

[2] Marchenkov S. S., “Ob odnom klasse nepolnykh mnozhestv”, Matem. zametki, 20:4 (1976), 473–478 | MR | Zbl

[3] Belegradek O. V., “Ob algebraicheski zamknutykh gruppakh”, Algebra i logika, 13:3 (1974), 239–255 | MR | Zbl

[4] Arslanov M. M., Omanadze R. Sh., “$Q$-degrees of $n$-c.e. sets”, Illinois J. Math., 51:4 (2007), 1189–1206 | MR | Zbl

[5] Soar R. I., Vychislimo perechislimye mnozhestva i stepeni, Kazansk. matem. o-vo, Kazan, 2000, 576 pp. | MR | Zbl

[6] Cooper S. B., Yi X., Isolated d.r.e. degrees, Preprint

[7] LaForte G., Phenomena in the $n$-r.e. and $n$-REA degrees, Ph. D. Thesis, University of Michigan, Michigan, 1995

[8] Wu G., “Bi-isolation in the d.c.e. degrees”, J. Symbolic Logic, 69:2 (2004), 409–420 | DOI | MR | Zbl

[9] Arslanov M. M., Lempp S., Shore R. A., “On isolating r.e. and isolated $d$-r.e. degrees”, Computability, enumerability, unsolvability, Cambridge University Press, Cambridge, 1996, 61–80 | MR | Zbl

[10] Efremov S. S., “Izolirovannye sverkhu $d$-v.p. stepeni. II”, Izv. vuzov. Matematika, 1998, no. 7, 18–25 | MR