$AF$-subalgebras of a $C^*$-algebra generated by a mapping
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 82-87
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider a $ C^*$-subalgebra of the algebra of all bounded operators $B(l^2(X))$ on the Hilbert space $l^2(X)$ with one generating element $T_\varphi$ induced by a mapping $\varphi\colon X\to X$ of the set $X$ into itself. We prove that such a $C^*$-algebra has an $AF$-subalgebra and establish commutativity conditions for the latter. We prove that a $C^*$-algebra generated by a mapping produces a dynamic system such that the corresponding group of automorphisms is invariant on elements of the $AF$-subalgebra.
Keywords:
$AF$-algebra, $C^*$-algebra, partial isometry.
@article{IVM_2010_3_a9,
author = {S. A. Grigoryan and A. Yu. Kuznetsova},
title = {$AF$-subalgebras of a~$C^*$-algebra generated by a~mapping},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {82--87},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a9/}
}
S. A. Grigoryan; A. Yu. Kuznetsova. $AF$-subalgebras of a $C^*$-algebra generated by a mapping. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 82-87. http://geodesic.mathdoc.fr/item/IVM_2010_3_a9/
[1] Grigoryan S. A., Kuznetsova A. Yu., “$C^*$-algebry, porozhdennye otobrazheniyami”, Materialy shkoly-seminara “Volga–2006”, Kazan, 2006, 28
[2] Grigoryan S., Kuznetsova A., “$C^*$-algebras generated by mappings”, Lobachevskii J. Math., 29:1 (2008), 5–8 | DOI | MR | Zbl
[3] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl
[4] Kumjian A., On certain Cuntz–Pimsner algebras, , 29 Aug. 2001 arxiv: org.math/0108194v1[math.OA]
[5] Kuznetsova A. Yu., “Primery $C^*$-algebr, porozhdennykh otobrazheniyami”, Noveishie problemy teorii polya 2005–2006, Kazan, 2007, 170–175