Algebras over operad of spheres
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 72-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an operad whose components are multidimensional spheres. We give a description (up to the rational equivalence) of the variety of algebras over this operad in terms of symbols of operations and identities.
Keywords: operad, algebra, variety, sphere.
Mots-clés : rational equivalence, convexor, simplex
@article{IVM_2010_3_a8,
     author = {S. N. Tronin},
     title = {Algebras over operad of spheres},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--81},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a8/}
}
TY  - JOUR
AU  - S. N. Tronin
TI  - Algebras over operad of spheres
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 72
EP  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a8/
LA  - ru
ID  - IVM_2010_3_a8
ER  - 
%0 Journal Article
%A S. N. Tronin
%T Algebras over operad of spheres
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 72-81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a8/
%G ru
%F IVM_2010_3_a8
S. N. Tronin. Algebras over operad of spheres. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 72-81. http://geodesic.mathdoc.fr/item/IVM_2010_3_a8/

[1] Tronin S. N., “Operady v kategorii konveksorov. I”, Izv. vuzov. Matematika, 2002, no. 3, 42–50 | MR | Zbl

[2] Skornyakov L. A., “Algebra stokhasticheskikh raspredelenii”, Izv. vuzov. Matematika, 1982, no. 11, 59–67 | MR | Zbl

[3] Skornyakov L. A., “Stokhasticheskaya algebra”, Izv. vuzov. Matematika, 1985, no. 7, 3–11 | MR | Zbl

[4] Tronin S. N., “Operady i mnogoobraziya, opredelyaemye polilineinymi tozhdestvami”, Sib. matem. zhurn., 47:3 (2006), 670–694 | MR | Zbl

[5] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977, 408 pp. | MR

[6] Smirnov V. A., Simplitsialnye i operadnye metody v teorii gomotopii, Izd-vo “Faktorial Press”, M., 2002, 272 pp.

[7] Markl M., Shnider S., Stasheff J., Operads in algebra, topology and physics, Math. Surveys and Monographs, 96, AMS, 2002, 349 pp. | MR | Zbl

[8] Ginzburg V., Kapranov M., “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl

[9] Tronin S. N., Kopp O. A., “Matrichnye lineinye operady”, Izv. vuzov. Matematika, 2000, no. 6, 53–62 | MR | Zbl

[10] Svittser R. M., Algebraicheskaya topologiya. Gomotopii i gomologii, Nauka, M., 1985, 608 pp. | MR

[11] Maltsev A. I., “Strukturnaya kharakteristika nekotorykh klassov algebr”, DAN SSSR, 120:1 (1958), 29–32

[12] Pinus A. G., Uslovnye termy i ikh primenenie v algebre i teorii vychislenii, Izd-vo NGTU, Novosibirsk, 2002, 239 pp.