Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_3_a8, author = {S. N. Tronin}, title = {Algebras over operad of spheres}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {72--81}, publisher = {mathdoc}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a8/} }
S. N. Tronin. Algebras over operad of spheres. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 72-81. http://geodesic.mathdoc.fr/item/IVM_2010_3_a8/
[1] Tronin S. N., “Operady v kategorii konveksorov. I”, Izv. vuzov. Matematika, 2002, no. 3, 42–50 | MR | Zbl
[2] Skornyakov L. A., “Algebra stokhasticheskikh raspredelenii”, Izv. vuzov. Matematika, 1982, no. 11, 59–67 | MR | Zbl
[3] Skornyakov L. A., “Stokhasticheskaya algebra”, Izv. vuzov. Matematika, 1985, no. 7, 3–11 | MR | Zbl
[4] Tronin S. N., “Operady i mnogoobraziya, opredelyaemye polilineinymi tozhdestvami”, Sib. matem. zhurn., 47:3 (2006), 670–694 | MR | Zbl
[5] Bordman Dzh., Fogt R., Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977, 408 pp. | MR
[6] Smirnov V. A., Simplitsialnye i operadnye metody v teorii gomotopii, Izd-vo “Faktorial Press”, M., 2002, 272 pp.
[7] Markl M., Shnider S., Stasheff J., Operads in algebra, topology and physics, Math. Surveys and Monographs, 96, AMS, 2002, 349 pp. | MR | Zbl
[8] Ginzburg V., Kapranov M., “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl
[9] Tronin S. N., Kopp O. A., “Matrichnye lineinye operady”, Izv. vuzov. Matematika, 2000, no. 6, 53–62 | MR | Zbl
[10] Svittser R. M., Algebraicheskaya topologiya. Gomotopii i gomologii, Nauka, M., 1985, 608 pp. | MR
[11] Maltsev A. I., “Strukturnaya kharakteristika nekotorykh klassov algebr”, DAN SSSR, 120:1 (1958), 29–32
[12] Pinus A. G., Uslovnye termy i ikh primenenie v algebre i teorii vychislenii, Izd-vo NGTU, Novosibirsk, 2002, 239 pp.