Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 52-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper with the help of Smolyak quadrature formulas we calculate exact orders of errors of the numerical integration of trigonometric Fourier coefficients of functions from generalized classes of the Korobov and Sobolev type. We apply the obtained results to the recovery of functions from their values at a finite number of points in terms of K. Sherniyazov approach.
Keywords: Ul'yanov classes, numerical integration, Smolyak quadrature formula, restoration operators.
Mots-clés : trigonometric Fourier coefficients
@article{IVM_2010_3_a7,
     author = {N. Temirgaliev and S. S. Kudaibergenov and A. A. Shomanova},
     title = {Applications of {Smolyak} quadrature formulas to the numerical integration of {Fourier} coefficients and in function recovery problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--71},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a7/}
}
TY  - JOUR
AU  - N. Temirgaliev
AU  - S. S. Kudaibergenov
AU  - A. A. Shomanova
TI  - Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 52
EP  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a7/
LA  - ru
ID  - IVM_2010_3_a7
ER  - 
%0 Journal Article
%A N. Temirgaliev
%A S. S. Kudaibergenov
%A A. A. Shomanova
%T Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 52-71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a7/
%G ru
%F IVM_2010_3_a7
N. Temirgaliev; S. S. Kudaibergenov; A. A. Shomanova. Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 52-71. http://geodesic.mathdoc.fr/item/IVM_2010_3_a7/

[1] Azhgaliev Sh., Temirgaliev N., “Informativnaya moschnost vsekh lineinykh funktsionalov pri vosstanovlenii funktsii iz klassov $H_p^\omega$”, Matem. sb., 198:11 (2007), 3–20 | MR | Zbl

[2] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, DAN SSSR, 148:5 (1963), 1042–1045 | Zbl

[3] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. $\dots$ kand. fiz.-matem. nauk, Org. p/ya 2325, M., 1965, 118–119

[4] Wasilkowski G., Wozniakowski H., “Explicit cost bounds of algorithms for multivariate tensor product problems”, J. Complexity, 11:1 (1995), 1–56 | DOI | MR | Zbl

[5] Temirgaliev N., “Klassy $U_s(\beta,\theta,\alpha;\psi)$ i kvadraturnye formuly”, Dokl. RAN, 393:5 (2003), 605–608 | MR

[6] Nikolskii S. M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Gëldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364

[7] Nikolskii S. M., “Ob ustoichivykh granichnykh znacheniyakh differentsiruemoi funktsii mnogikh peremennykh”, Matem. sb., 61(103):2 (1963), 224–252 | MR | Zbl

[8] Amanov T. I., “Teoremy predstavleniya i vlozheniya dlya funktsionalnykh prostranstv $S^r_{p,\theta}B(R_n)$ i $S^r_{p,\theta}\ast B$ ($0\leq x_j\leq2\pi$, $j=1,\dotsc,n$)”, Tr. Matem. in-ta AN SSSR, 77, 1965, 5–34 | MR | Zbl

[9] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963, 224 pp. | MR | Zbl

[10] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya zanyatii, M., 2007, 636 pp.

[11] Novak E., Sloan Ian H., Wozniakowski H., “Tractability of approximation for weighted Korobov spaces on classical and quantum computers”, Found. Comput. Math., 4:2 (2004), 121–156 | DOI | MR | Zbl

[12] Nurmoldin E., Zadachi vosstanovleniya na klassakh funktsii beskonechnoi gladkosti, Diss. $\dots$ kand. fiz.-matem. nauk, Astana, 2007

[13] Nurmoldin E., “Vosstanovlenie funktsii, integralov i reshenii uravneniya teploprovodnosti iz klassov Ulyanova”, Sib. zhurn. vychisl. matem., 8:4 (2005), 337–351 | Zbl

[14] Tleukhanova N., “Interpolyatsionnaya formula dlya funktsii mnogikh peremennykh”, Matem. zametki, 74:1 (2003), 154–156 | MR | Zbl

[15] Tleukhanova N., “Interpolyatsionnaya formula multiplikativnykh preobrazovanii funktsii mnogikh peremennykh”, Dokl. RAN, 390:2 (2003), 169–171 | MR | Zbl

[16] Temlyakov V. N., “Priblizhennoe vosstanovlenie periodicheskikh funktsii neskolkikh peremennykh”, Matem. sb., 128(170):2 (1985), 256–268 | MR | Zbl

[17] Temlyakov V. N., “On approximate recovery of functions with bounded mixed derivative”, J. Complexity, 1993, no. 9, 41–59 | DOI | MR | Zbl

[18] Sickel W., Ullrich T., “The Smolyak's algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness”, East J. Approx., 13:4 (2007), 387–425 | MR

[19] Din Zung, “O vosstanovlenii i odnostoronnem priblizhenii periodicheskikh funktsii mnogikh peremennykh”, DAN SSSR, 313:4 (1990), 787–790 | MR | Zbl

[20] Dinh Dung, “On optimal recovery of multivariate periodic functions”, Harmonic analysis, Satellite Conf. Proc., Springer-Verlag, Tokyo–Berlin, 1991, 96–105 | MR

[21] Dinh Dung, “Optimal recovery of functions of a certain mixed smoothness”, Vietnam J. Math., 20:2 (1992), 18–32 | MR | Zbl

[22] Azhgaliev Sh. U., Temirgaliev N., “Ob informativnoi moschnosti lineinykh funktsionalov”, Matem. zametki, 73:6 (2003), 803–812 | MR | Zbl

[23] Kudaibergenov S., Sanabaev K., Temirgaliev N., Sherniyazov K., “O vosstanovlenii funktsii i ikh preobrazovanii”, Sb. materialov VIII seminara-soveschaniya “Kubaturnye formuly i ikh prilozheniya”, Ulan-Ude, 2005, 75–79

[24] Bernshtein S. N., “O trigonometricheskom integrirovanii po sposobu naimenshikh kvadratov”, DAN SSSR, 4:1–2 (1934), 1–5

[25] Nikolskii S. M., “Priblizhenie periodicheskikh funktsii trigonometricheskimi mnogochlenami”, Tr. MIAN, 15, 1945, 3–76 | MR | Zbl

[26] Ryabenkii V. S., “O tablitsakh i interpolyatsii funktsii iz nekotorogo klassa”, DAN SSSR, 131:5 (1960), 1025–1027

[27] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | MR | Zbl

[28] Sherniyazov K., Priblizhennoe vosstanovlenie funktsii i reshenii uravnenii teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov $E$, $SW$ i $B$, Diss. $\dots$ kand. fiz.-matem. nauk, Almaty, 1998

[29] Temirgaliev N., “Teoretiko-chislovye metody i teoretiko-veroyatnostnyi podkhod k zadacham analiza. Teoriya vlozhenii i priblizhenii, absolyutnaya skhodimost i preobrazovaniya ryadov Fure”, Vestn. Evraziiskogo un-ta, 1997, no. 3, 90–144 | MR

[30] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl