The nature of convergence of the Fourier series for functions of bounded variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 48-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study increasing sequences of positive integers that divide the Fourier series of functions of bounded variation into blocks of absolutely convergent series. We obtain a new version of the stability theorem for such sequences.
Keywords: Fourier series, functions of bounded variation, absolute convergence.
@article{IVM_2010_3_a6,
     author = {S. A. Telyakovskii},
     title = {The nature of convergence of the {Fourier} series for functions of bounded variation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--51},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a6/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - The nature of convergence of the Fourier series for functions of bounded variation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 48
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a6/
LA  - ru
ID  - IVM_2010_3_a6
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T The nature of convergence of the Fourier series for functions of bounded variation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 48-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a6/
%G ru
%F IVM_2010_3_a6
S. A. Telyakovskii. The nature of convergence of the Fourier series for functions of bounded variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 48-51. http://geodesic.mathdoc.fr/item/IVM_2010_3_a6/

[1] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR | Zbl

[2] Belov A. S., Telyakovskii S. A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Matem. sb., 198:6 (2007), 25–40 | MR | Zbl