The nature of convergence of the Fourier series for functions of bounded variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 48-51
Cet article a éte moissonné depuis la source Math-Net.Ru
We study increasing sequences of positive integers that divide the Fourier series of functions of bounded variation into blocks of absolutely convergent series. We obtain a new version of the stability theorem for such sequences.
Keywords:
Fourier series, functions of bounded variation, absolute convergence.
@article{IVM_2010_3_a6,
author = {S. A. Telyakovskii},
title = {The nature of convergence of the {Fourier} series for functions of bounded variation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--51},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a6/}
}
S. A. Telyakovskii. The nature of convergence of the Fourier series for functions of bounded variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 48-51. http://geodesic.mathdoc.fr/item/IVM_2010_3_a6/
[1] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR | Zbl
[2] Belov A. S., Telyakovskii S. A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Matem. sb., 198:6 (2007), 25–40 | MR | Zbl