A nonlocal problem for the Bitsadze--Lykov equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 28-35
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a nonlocal boundary value problem for a degenerate hyperbolic equation. We prove that this problem is uniquely solvable if integral Volterra equations of the second kind are solvable with various values of parameters and a generalized fractional integro-differential operator with a hypergeometric Gaussian function in the kernel.
Keywords:
boundary value problem, fractional integro-differential operator, integral Volterra equation.
@article{IVM_2010_3_a4,
author = {O. A. Repin and S. K. Kumykova},
title = {A nonlocal problem for the {Bitsadze--Lykov} equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {28--35},
publisher = {mathdoc},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a4/}
}
O. A. Repin; S. K. Kumykova. A nonlocal problem for the Bitsadze--Lykov equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 28-35. http://geodesic.mathdoc.fr/item/IVM_2010_3_a4/