The Riemann function for one equation in an $n$-dimensional space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 23-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the explicit Riemann function for a special partial differential equation with a leading partial derivative in the $n$-dimensional space.
Keywords: Riemann method, equation with leading partial derivative.
@article{IVM_2010_3_a3,
     author = {A. N. Mironov},
     title = {The {Riemann} function for one equation in an $n$-dimensional space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--27},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a3/}
}
TY  - JOUR
AU  - A. N. Mironov
TI  - The Riemann function for one equation in an $n$-dimensional space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 23
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a3/
LA  - ru
ID  - IVM_2010_3_a3
ER  - 
%0 Journal Article
%A A. N. Mironov
%T The Riemann function for one equation in an $n$-dimensional space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 23-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a3/
%G ru
%F IVM_2010_3_a3
A. N. Mironov. The Riemann function for one equation in an $n$-dimensional space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 23-27. http://geodesic.mathdoc.fr/item/IVM_2010_3_a3/

[1] Fage M. K., “Zadacha Koshi dlya uravneniya Bianki”, Matem. sb., 45(87):3 (1958), 281–322 | MR | Zbl

[2] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, DAN SSSR, 297:3 (1987), 547–552 | MR

[3] Zhegalov V. I., Sevastyanov V. A., “Zadacha Gursa v chetyrekhmernom prostranstve”, Differents. uravneniya, 32:10 (1996), 1429–1430 | MR | Zbl

[4] Sevastyanov V. A., “Metod Rimana dlya trekhmernogo giperbolicheskogo uravneniya tretego poryadka”, Izv. vuzov. Matematika, 1997, no. 5, 69–73 | MR | Zbl

[5] Sevastyanov V. A., “Ob odnom sluchae zadachi Koshi”, Differents. uravneniya, 34:12 (1998), 1706–1707 | MR

[6] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matematika, 1999, no. 10, 73–76 | MR | Zbl

[7] Zhegalov V. I., Utkina E. A., “Zadacha Gursa dlya odnogo trekhmernogo uravneniya so starshei proizvodnoi”, Izv. vuzov. Matematika, 2001, no. 11, 77–81 | MR | Zbl

[8] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazanskoe matem. o-vo, 2001, 226 pp.

[9] Zhegalov V. I., Mironov A. N., “O zadachakh Koshi dlya dvukh uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matematika, 2002, no. 5, 23–30 | MR | Zbl

[10] Zhegalov V. I., Utkina E. A., “Ob odnom uravnenii v chastnykh proizvodnykh chetvertogo poryadka s tremya nezavisimymi peremennymi”, Differents. uravneniya, 38:1 (2002), 93–97 | MR

[11] Mironov A. N., “K zadache Koshi v chetyrekhmernom prostranstve”, Differents. uravneniya, 40:6 (2004), 844–847 | MR | Zbl

[12] Mironov A. N., “O metode Rimana resheniya zadachi Koshi”, Izv. vuzov. Matematika, 2005, no. 2, 34–44 | MR

[13] Mironov A. N., “Metod Rimana dlya uravnenii so starshei chastnoi proizvodnoi v $R^n$”, Sib. matem. zhurn., 47:3 (2006), 584–594 | MR | Zbl

[14] Dzhokhadze O., Midodashvili B., “Prostranstvennye giperbolicheskie uravneniya vysokogo poryadka s dominirovannymi mladshimi chlenami”, Izv. vuzov. Matematika, 2006, no. 6, 25–34 | MR | Zbl