Embedding of $H_p^\omega$ in the class $e^L$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the necessary conditions for the embedding $H_p^\omega\subset e^L$ ($1\le p\infty$) with convex modulus of continuity $\omega$ in terms of this modulus. In the case $p=1$ these conditions are also sufficient.
Keywords: modulus of continuity, decreasing rearrangement, embedding in the class $\varphi(L)$.
@article{IVM_2010_3_a0,
     author = {V. A. Andrienko},
     title = {Embedding of $H_p^\omega$ in the class $e^L$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a0/}
}
TY  - JOUR
AU  - V. A. Andrienko
TI  - Embedding of $H_p^\omega$ in the class $e^L$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 3
EP  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a0/
LA  - ru
ID  - IVM_2010_3_a0
ER  - 
%0 Journal Article
%A V. A. Andrienko
%T Embedding of $H_p^\omega$ in the class $e^L$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 3-8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a0/
%G ru
%F IVM_2010_3_a0
V. A. Andrienko. Embedding of $H_p^\omega$ in the class $e^L$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2010_3_a0/

[1] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_p^\omega$”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 649–686 | MR | Zbl

[2] Leindler L., “On embedding of classes $H_p^\omega$”, Acta Sci. Math. (Szeged), 31:1–2 (1970), 13–31 | MR | Zbl

[3] Storozhenko E. A., “Neobkhodimye i dostatochnye usloviya dlya vlozheniya nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 37:2 (1973), 386–398 | MR | Zbl

[4] Kolyada V. I., “O vlozhenii v klassy $\varphi(L)$”, Izv. AN SSSR. Ser. matem., 39:2 (1975), 418–437 | MR | Zbl

[5] Storozhenko E. A., “O nekotorykh teoremakh vlozheniya”, Matem. zametki, 19:2 (1976), 187–200 | MR | Zbl

[6] Storozhenko E. A., “O vlozhenii v klass $e^L$”, Matem. zametki, 10:1 (1971), 17–24 | MR | Zbl

[7] Ulyanov P. L., “Teoremy vlozheniya i sootnoshenie mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81(123):1 (1970), 104–131 | MR | Zbl

[8] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[9] Osvald P., “O modulyakh nepreryvnosti ravnoizmerimykh funktsii v klassakh $\varphi(L)$”, Matem. zametki, 17:2 (1975), 231–244 | MR | Zbl