On the approximation of entire functions by trigonometric polynomials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 97-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a set $B$ have the following properties: if $z\in B$, then $z\pm2\pi\in B$ and the intersection of $B$ and the strip $0\le\operatorname{Re}x\le\pi$ is a closed and bounded set. In this paper we study the approximation of a continuous on $B$ and $2\pi$-periodic function $f(z)$ by trigonometric polynomials $T_n(z)$. We establish the necessary and sufficient conditions for the function $f(z)$ to be entire and specify a formula for calculating its order. In addition, we describe some metric properties of periodic sets in a plane.
Keywords: trigonometric polynomials, entire function, order of entire function, Fekete numbers.
@article{IVM_2010_2_a9,
     author = {E. G. Kir'yatskii},
     title = {On the approximation of entire functions by trigonometric polynomials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {97--100},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a9/}
}
TY  - JOUR
AU  - E. G. Kir'yatskii
TI  - On the approximation of entire functions by trigonometric polynomials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 97
EP  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a9/
LA  - ru
ID  - IVM_2010_2_a9
ER  - 
%0 Journal Article
%A E. G. Kir'yatskii
%T On the approximation of entire functions by trigonometric polynomials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 97-100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a9/
%G ru
%F IVM_2010_2_a9
E. G. Kir'yatskii. On the approximation of entire functions by trigonometric polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 97-100. http://geodesic.mathdoc.fr/item/IVM_2010_2_a9/