Almost sure versions of limit theorems for random sums of multiindex random variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 86-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain an almost sure version of a limit theorem for random sums of multiindex random variables that belong to the domain of attraction of a $p$-stable law.
Keywords: limit theorems, random sums, Student statistic.
Mots-clés : random variables, domain of attraction
@article{IVM_2010_2_a8,
     author = {A. N. Chuprunov and L. P. Terekhova},
     title = {Almost sure versions of limit theorems for random sums of multiindex random variables},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--96},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a8/}
}
TY  - JOUR
AU  - A. N. Chuprunov
AU  - L. P. Terekhova
TI  - Almost sure versions of limit theorems for random sums of multiindex random variables
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 86
EP  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a8/
LA  - ru
ID  - IVM_2010_2_a8
ER  - 
%0 Journal Article
%A A. N. Chuprunov
%A L. P. Terekhova
%T Almost sure versions of limit theorems for random sums of multiindex random variables
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 86-96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a8/
%G ru
%F IVM_2010_2_a8
A. N. Chuprunov; L. P. Terekhova. Almost sure versions of limit theorems for random sums of multiindex random variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 86-96. http://geodesic.mathdoc.fr/item/IVM_2010_2_a8/

[1] Brosamler G., “An almost everywhere central limit theorem”, Math. Proc. Cambridge Phil. Soc., 104 (1988), 561–574 | DOI | MR | Zbl

[2] Schatte P., “On strong versions of the central limit theorem”, Math. Nachr., 137 (1988), 249–256 | DOI | MR | Zbl

[3] Berkes I., “On the almost sure central limit theorem and domains of attraction”, Probab. Theory Related Fields, 102 (1995), 1–18 | DOI | MR

[4] Ibragimov I. A., “O pochti vsyudu versiyakh predelnykh teorem”, Dokl. RAN, 350 (1996), 301–303 | MR | Zbl

[5] Berkes I., Csáki E., “A universal result in almost sure central limit theory”, Stoch. Proc. Appl., 94 (2001), 105–134 | DOI | MR | Zbl

[6] Fazekas I., Rychlik Z., “Almost sure central limit theorems for random fields”, Math. Nachr., 259 (2003), 12–18 | DOI | MR | Zbl

[7] Kruglov V. M., Petrovskaya G. N., “Weak convergence of self-normalized random poligonal lines”, J. of Math. Sci., 112 (2002), 4145–4154 | DOI | MR | Zbl

[8] Rényi A., “On the theory of order statistics”, Acts Math. Acad. Sci. Hung., 4 (1953), 191–231 | DOI | MR | Zbl

[9] Kruglov V. M., Korolev V. Yu., Predelnye teoremy dlya sluchainykh summ, Izd-vo Mosk. un-ta, M., 1990, 269 pp. | MR | Zbl

[10] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, GITTL, M.–L., 1949, 264 pp. | MR

[11] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR