The Riesz bases consisting of eigen and associated functions for a~functional differential operator with variable structure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 39-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a functional differential operator of variable structure with an integral boundary condition. We prove that its eigen and associated functions form a Riesz basis with brackets in the space $L^3_2[0,1]$.
Keywords: Riesz basis, resolvent, eigenfunction, boundary condition, regularity.
@article{IVM_2010_2_a4,
     author = {V. P. Kurdyumov and A. P. Khromov},
     title = {The {Riesz} bases consisting of eigen and associated functions for a~functional differential operator with variable structure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--52},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a4/}
}
TY  - JOUR
AU  - V. P. Kurdyumov
AU  - A. P. Khromov
TI  - The Riesz bases consisting of eigen and associated functions for a~functional differential operator with variable structure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 39
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a4/
LA  - ru
ID  - IVM_2010_2_a4
ER  - 
%0 Journal Article
%A V. P. Kurdyumov
%A A. P. Khromov
%T The Riesz bases consisting of eigen and associated functions for a~functional differential operator with variable structure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 39-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a4/
%G ru
%F IVM_2010_2_a4
V. P. Kurdyumov; A. P. Khromov. The Riesz bases consisting of eigen and associated functions for a~functional differential operator with variable structure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 39-52. http://geodesic.mathdoc.fr/item/IVM_2010_2_a4/

[1] Babbage Ch., “An essay towards the calculas on functions”, Philosophical transactions of the Royal Society of London, 11 (1816), 179–256 | DOI

[2] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:5 (2004), 1126–1128 | Zbl

[3] Dankl Ch. G., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR

[4] Platonov S. S., “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavod. gos. un-ta. Ser. matem., 2004, no. 11, 15–35 | MR

[5] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Matem. zametki, 64:6 (1998), 932–949 | MR | Zbl

[6] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Matem. sb., 192:10 (2001), 33–50 | MR | Zbl

[7] Kurdyumov V. P., Khromov A. P., “O bazisakh Rissa iz sobstvennykh funktsii integralnogo operatora s peremennym predelom integrirovaniya”, Matem. zametki, 76:1 (2004), 97–110 | MR | Zbl

[8] Keselman G. M., “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matematika, 1964, no. 2, 82–93 | MR | Zbl

[9] Mikhailov V. P., “O bazisakh Rissa v $L_2[0,1]$”, DAN SSSR, 144:5 (1962), 981–984

[10] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii. I”, Differents. uravneniya, 16:5 (1980), 771–794 | MR

[11] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii. II”, Differents. uravneniya, 16:6 (1980), 980–1009 | MR

[12] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 190–229 | MR | Zbl

[13] Shkalikov A. A., “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. MGU. Ser. matem., mekhan., 1982, no. 6, 12–21 | MR | Zbl

[14] Baskakov A. G., Katsaran T. K., “Spektralnyi analiz integro-differentsialnykh operatorov s nelokalnymi kraevymi usloviyami”, Differents. uravneniya, 24:8 (1988), 1424–1433 | MR | Zbl

[15] Rappoport I. M., O nekotorykh asimtoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954, 287 pp.

[16] Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s peremennymi predelami integrirovaniya”, Inf. byulleten zhurn. Integralnye preobrazovaniya i spetsialnye funktsii, 6:1 (2006), 46–55 | MR

[17] Sedletskii A. M., Analiticheskie preobrazovaniya Fure i eksponentsialnye approksimatsii, T. I, Izd-vo MAI, M., 2003, 150 pp.

[18] Kurdyumov V. P., Khromov A. P., “O bazisakh Rissa iz sobstvennykh i prisoedinennykh funktsii differentsialno-raznostnogo operatora s mnogotochechnym kraevym usloviem”, Matematika. Mekhanika, Sb. nauch.tr., Vyp. 6, Izd-vo Sarat. un-ta, Saratov, 2004, 80–82